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P. Givi, C.K. Madnia, L.Y.M. Gicquel, M.R.H. Sheikhi and T.G. Drozda

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, NY 14260-4400

Abstract

The objective of this research is to improve and implement the filtered mass

density function (FDF) methodology for large eddy simulation (LES) of high-

speed reacting turbulent flows. We have just completed three years of this

research. This is the Final Report on our activities during the period: Septem-

ber 1, 1999 through August 31, 2002.

Dr. J. Philip Drummond (Hypersonic Propulsion Branch, NASA LaRC,

Mail Stop 197, Tel: 757-864-2298) is the Technical Monitor of this Grant.

1 Introduction

An issue of current interest to NASA is associated with design of various components

involved in air-breathing propulsion systems such as the scramjet [1]. A successful

design needs the resolution of numerous issues such as fuel injector design and opti-

mization, flame holding associated with the injection, critical design studies of certain

areas (not the whole integrated engine), etc. Resolving these issues is of crucial im-

portance to achieve the final goal of producing a more optimum aerospace propulsion

system for hypersonic vehicles. To achieve this goal, however, there is a demand for

development of robust tools that can aid in the design procedure. This is due to the

fact that the physics of high-speed reactive flows is rich with many complexities. Few



examples of the physical issues of current interest are the questions associated with

the chemical and thermodynamical non-equilibrium effects, the cause and effect of

turbulence, the interaction of turbulence and chemistry, the real gas effects at high

temperatures, etc.

The need for advanced computational methods for the analysis of high speed propul-

sion systems is obvious [1]. Within the past three decades the NASA Langley Research

Center (LaRC) has been at the forefront in making use of advanced computational

methods for investigations of such systems. Large eddy simulation (LES) is regarded

as one the most promising means of simulating turbulent reacting flows [2,3]. Amongst

the various LES strategies, the approach based on the probability density function

(PDF) has proven particularly effective [4-19]. The formal means of conducting such

LES is by consideration of the "filtered density function" (FDF) which is essentially

the filtered fine-grained PDF of the transport quantities [20]. Colucci et al. [8] devel-

oped a transport equation for the FDF in constant density turbulent reacting flows.

Jaberi et al. [9] extended the methodology for LES of variable density flows by con-

sideration of the "filtered mass density function" (FMDF) which is the mass weighted

FDF. The fundamental property of the PDF methods is exhibited by the closed form

nature of the chemical source term appearing in the transport equation governing the

FDF (FMDF). This property is very important as evidenced in several applications

of FDF for LES of a variety of turbulent reacting flows [8-12, 16].

2 Accomplishments

The goal of this research was to improve the capabilities of the FDF method and to

implement it for LES of chemically reacting turbulent flows. We feel that we have

been very successful in achieving the specific objectives of this work. These objectives

were:

1. Development and implementation of the velocity filtered density function

(VFDF) for LES.

2. Development and implementation of the joint velocity-scalar filtered den-

sity function (VSFDF) for LES.

3. Implementation of the FDF for LES of hydrocarbon diffusion flames and

comparison with experimental data.



The effortspertaining to thefirst two objectivesarecompletedand are fully described

in journal articles (included hereas Appendix I and Appendix II). The work pertain-
ing to the third objective is premature for publication. Also, during the work on
this project, the PI was invited to deliver a Keynote Lecture at the Third AFOSR
International Conferenceon DNS and LES (Arlington, TX, August 5-9, 2001). A

copyof the reviewarticle on this tutorial lecture is givenin Appendix III. The efforts

pertaining to eachof theseobjectivesaresummarizedin the next three subsections.

2.1 Velocity Filtered Density Function for Large Eddy Sim-

ulation of Turbulent Flows

In this part of our work, a methodology termed the "velocity filtered density function"

(VFDF) is developed and implemented for large eddy simulation (LES) of turbulent

flows. In this methodology, the effects of the unresolved subgrid scales (SGS) are

taken into account by considering the joint probability density function (PDF) of all

of the components of the velocity vector. An exact transport equation is derived for

the VFDF in which the effects of the SGS convection appear in closed form. The

unclosed terms in this transport equation are modeled. A system of stochastic differ-

ential equations (SDEs) which yields statistically equivalent results to the modeled

VFDF transport equation is constructed. These SDEs are solved numerically by a

Lagrangian Monte Carlo procedure in which the It6-Gikhman character of the SDEs

is preserved. The consistency of the proposed SDEs and the convergence of the Monte

Carlo solution are assessed by comparison with results obtained by an Eulerian LES

procedure in which the corresponding transport equations for the first two SGS mo-

ments are solved. The VFDF results are compared with those obtained via several

existing SGS closures. These results are also analyzed via a priori and a posteri-

ori comparisons with results obtained by direct numerical simulation (DNS) of an

incompressible, three-dimensional (3D), temporally developing mixing layer.

This work is fully described in Appendix II.
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2.2 Velocity-Scalar Filtered Density Function for Large Eddy

Simulation of Turbulent Flows

In this part of our work, a methodology termed the "velocity-scalar filtered density

function" (VSFDF) is developed and implemented for large eddy simulation (LES)

of turbulent flows. In this methodology, the effects of the unresolved subgrid scales

(SGS) are taken into account by considering the joint probability density function

(PDF) of the velocity-scalar field. An exact transport equation is derived for the

VSFDF in which the effects of the SGS convection and chemical reaction are closed.

The unclosed terms in this equation are modeled. A system of stochastic differ-

ential equations (SDEs) which yields statistically equivalent results to the modeled

VSFDF transport equation is constructed. These SDEs are solved numerically by a

Lagrangian Monte Carlo procedure in which the It6-Gikhman character of the SDEs

is preserved. The consistency of the proposed SDEs and the convergence of the Monte

Carlo solution are assessed by comparison with results obtained by a finite difference

LES procedure in which the corresponding transport equations for the first two SGS

moments are solved. The VSFDF results are compared with those obtained via other

SGS closures, and all the results are assessed via comparison with data obtained by

direct numerical simulation (DNS) of a temporally developing mixing layer involv-

ing transport of a passive scalar. It is shown that the values of both the SGS and

the resolved components of all second order moments including the scalar fluxes are

predicted well by VSFDF. The sensitivity of the model's (empirical) constants are

assessed and it is shown that the magnitudes of these constants are in the same range

as that typically employed in PDF methods.

This work is fully described in Appendix II.

2.3 Scalar Filtered Density Function for Large Eddy Simu-

lation of a Diffusion Flame

We have started work on the use of the filtered density function (FDF) method for

large eddy simulation (LES) of the piloted jet flame configuration as considered in

the experiments of the Combustion Research Facility at the Sandia National Lab-

oratory [21-25]. This flame has been the subject of broad investigations by other

computational/modeling methodologies [24]. In the experiments, three basic flames

4



are considered,identified by FlamesD, E, and F. The geometricalconfiguration in
theseflamesis the same,but the jet inlet velocity is varied. In Flame D, the fuel jet

velocity is the lowestand the flame is closeto equilibrium. The jet velocity increases
from flamesD to E to F, with noticeablenon-equilibrium effectsin the latter two.

Somepreliminary work hasalreadybeencompletedin which the LES/SFDF is used
for predictions for the Sandiapiloted jet flame. In thesesimulations, combustion is

modeledvia two chemistry models: (1) an equilibrium model via realistic kinetics,
(2) a finite rate, single-stepmodel for non-equilibrium flames. In (1), the LES/SFDF
is employedin conjunction with equilibrium methane-oxidationmodel. This model
is enactedvia "flamelet" simulationswhich considera laminar counterflow (opposed

jet) flame configuration [26-29]. The full methaneoxidation mechanismof the Gas
ResearchInstitute (GRI) [30,31] accounting for 53 speciesand 325 elementary re-
actions is employed. At low strain rates, the flame is close to equilibrium. Thus,
the thermo-chemicalvariablesare determinedcompletelyby the "mixture fraction."

This flamelet library is coupledwith our LES/SFDF solver in which transport of the
mixture fraction is considered.It is usefulto emphasizeherethat the PDF of the mix-
ture fraction is NOT "assumed"a priori (as done in almost all other flamelet based

LES [32-42]); rather, it is calculated explicitly via the SFDF. In (2), the methane

oxidation is modeled via a finite-rate, single-step kinetics model [43]. The system

of nonlinear ordinary different equations representing reactant conversion is solved

via LES/SFDF for all of the scalar variables (mass fractions and enthalpy). With

this, some aspects of non-equilibrium chemistry are taken into account, albeit in an

idealized manner.

With the equilibrium chemistry model, the results obtained by LES/SFDF/flamelet

are compared with Sandia's experimental data [21-25]. Up to now, we have only

simulated Flame D and we have observed good agreements. But more work is required

to ensure the accuracy of our results. Simulations of flames E and F have not been

yet attempted.

In closure of this section, we would like to state that since our early work on FDF,

this methodology has been used by several other investigators (e. 9. Refs. [12,16,19]).

Please see Appendix III for a recent review of current state of progress in LES/FDF.



3 Enhancement of Technology and Education

With completion of this research, we feel that we have been able to contribute to

maintain U.S. leadership in a technology which is of significant importance to NASA.

This is a very important matter, particularly when considering the extent of ongoing

concentrated efforts in Europe and Asia in the efforts proposed here. To appreci-

ate the seriousness of the competition, we indicate that the number of European

researchers who are currently involved in mathematical & computational modeling

of turbulent reacting flows is significantly larger than that in the U.S. In fact, con-

sidering only England, France and Germany, the number of senior investigators (not

including graduate students) who are working on the specific research field of "LES of

turbulent combustion" in these three countries is larger than that in the whole U.S.!

This indicates the wide recognition of the importance of this research field in other

countries. We feel that the approach proposed here is very promising in dealing with

this challenging problem in addition to enhancing the current state of knowledge in

turbulent combustion.

In order to demonstrate our visibility in this research, here we shall list all the awards

and some of noticeable achievements of the personnel involved in this program.

3.1 Graduate Students

Involvement of students in research is an issue which is taken very seriously at our

University We are committed to recruiting excellent quality students and involving

them in high caliber research. During the past three years, the following students

have been supported under this Grant.

1. Dr. Laurent Y.M. Gicquel (Ph.D. 2001). Currently: Research Scientist, CERFACS,

Toulouse, France. NASA's support is acknowledged in Ph.D. Disseration [44].

2. Mr. Tomasz G. Drozda (M.S. 2002). Currently: Ph.D. candidate at the University

of Pittsburgh. NASA's support is acknowledged in M.S. Thesis [45]

3. Mr. M. Reza H. Sheikhi (M.S. 2002). Currently: Ph.D. candidate at the University

of Pittsburgh.



3.2 Awards and Honors

1. Peyman Givi: Promoted to University at Buffalo Distinguished Professor (2002).

2. Peyman Givi: Received Professor of the Year Award, Tau Beta Pi Engineering

Honor Society, New York Nu Chapter (2001-2002).

3. Tomasz G. Drozda: Second Prize winner at the Graduate Technical Paper Com-

petition of AIAA Northeast Regional Student Conference, Rensselaer Polytechnic

Institute, Troy, NY. Title of paper: "A Hybrid Stochastic-Deterministic Methodol-

ogy for Large Eddy Simulation of Scalar Mixing and Reaction in Turbulent Flows,"

April, 2002.

4. Profile Featured in:

• Reporter: 13 named UB Distinguished Professor 33 (28), p. 1, May 9, 2002.

• The Buffalo News: Rolls-Royce using UB technique to refine its engines, p. E4,

March 19, 2002.

• SEAS News: LES results equal more expensive supercomputer simulations,

VIII(I), p. 6, Spring (2002).

• Reporter: New method produces "super" results. 33(21), p. 1, March 14, 2002.

• Reporter: Graduates bringing recognition to lab, 32(20), p. 4, February 15,

2001.

• ASEE Recruitment Video, the NASA Langley Research Center, Oil:ice of Edu-

cation, Hampton, VA, 1999-2000.

3.3 Publications

In all of the following publications, the support from NASA Langley is greatfully

acknowledged:

Invited Review Articles:

1. P. Girl, "A Review of Modern Developments in Large Eddy Simulation of Tur-

bulent Reactive Flows," Chapter in DNS//LES: Progress and Challenges, pp. 81-92,

Editors: C. Liu, L. Sakell and T. Beutner, Greyden Press, Columbus, OH, 2001.



2. F.A. Jaberi, F. Mashayek, C.K. Madnia, D.B. Taulbee and P. Givi, "Advances

in Analytical Description of Turbulent Reacting Flows," Chapter 9 in Advances in

Chemical Propulsion, pp. 149-164, Editor: Gabriel, D. Roy, CRC Press LLC, Boca

Raton, FL, 2002.

Refereed Papers:

1. M.R.H. Sheikhi, T.G. Drozda, P. Givi, and S.B. Pope, "Velocity-Scalar Fil-

tered Density Function for Large Eddy Simulation of Turbulent Flows," submitted

to Physics of Fluids (2002).

2. L.Y.M. Gicquel, P. Givi, F.A. Jaberi, and S.B. Pope, "Velocity Filtered Density

Function for Large Eddy Simulation of Turbulent Flows," Physics of Fluids, 14(3),

1196-1213, 2002.

3. L.Y.M. Gicquel, P. Givi, F.A. Jaberi, and S.B. Pope, "Velocity Filtered Density

Function for Large Eddy Simulation of a Turbulent Mixing Layer, in DNS/LES:

Progress and Challenges, pp. 327-334, Editors: C. Liu, L. Sakell and T. Beutner,

Greyden Press, Columbus, OH, 2001.

Conference Papers:

1. M.R.H. Sheikhi, T.G. Drozda, P. Givi, and S.B. Pope, "Velocity-Scalar Filtered

Density Function for Large Eddy Simulation of Turbulent Flows," submitted for

presentation at the 55th Annual Meeting of the Division of Fluid Dynamics of the

American Physical Society, Dallas, TX, November 2002.

2. P. Givi, L.Y.M. Gicquel, F.A. Jaberi and S.B. Pope, "PDF Methods for Large

Eddy Simulation of Turbulent Reactive Flows," Proceedings of IUTAM Symposium

on Turbulent Mixing and Combustion, pp. 96-97, Kingston, Ontario, Canada, June

2-6, 2001.

3. L.Y.M. Gicquel, P. Givi, F.A. Jaberi and S.B. Pope, "Velocity Filtered Density

Function for Large Eddy Simulation of Turbulent Flows," Bulletin of the American

Physical Society, 45(9), p. 129, 53rd Annual Meeting of the Division of Fluid Dy-

namics of the American Physical Society, Washington, DC, Nov. 19-21, 2000.

4. F.A. Jaberi, S. James and P. Givi, "Large Eddy Simulations of Methane ,let

Flames," Bulletin of the American Physical Society, 45(9), p. 72, 53rd Annual Meet-

ing of the Division of Fluid Dynamics of the American Physical Society, Washington,

DC, Nov. 19-21, 2000.



5. S.C. Garrick, F.A. Jaberi and P. Givi, "Large Eddy Simulation of Turbulent

ReactingRound Jets," Bulletin of the American Physical Society, 44(8), p. 44, 52nd

Annual Meeting of the Division of Fluid Dynamics of the American Physical Society,

New Orleans, LA, November 21-23, 1999.
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Abstract

A methodology termed the "velocity filtered density function" (VFDF) is developed

and implemented for large eddy simulation (LES) of turbulent flows. In this method-

ology, the effects of the unresolved subgrid scales (SGS) are taken into account by

considering the joint probability density function (PDF) of all of the components of

the velocity vector. An exact transport equation is derived for the VFDF in which

the effects of the SGS convection appear in closed form. The unclosed terms in this



transport equation aremodeled.A systemof stochasticdifferential equations (SDEs)

which yields statistically equivalentresults to the modeledVFDF transport equation

is constructed.TheseSDEsaresolvednumericallyby a LagrangianMonte Carlo pro-

cedurein which the ItS-Gikhman characterof the SDEsis preserved.The consistency

of the proposedSDEsand the convergenceof the Monte Carlo solution are assessed

by comparisonwith resultsobtained by an Eulerian LES procedurein which the cor-

respondingtransport equationsfor the first two SGSmomentsaresolved. The VFDF

resultsarecomparedwith thoseobtained via severalexisting SGSclosures.Thesere-

sults arealsoanalyzedvia a priori and a posteriori comparisonswith resultsobtained

by direct numerical simulation (DNS) of an incompressible,three-dimensional(3D),

temporally developingmixing layer.
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1 INTRODUCTION

The probability density function (PDF) approach has proven useful for large eddy

simulation (LES) of turbulent reacting flows.l-IS The formal means of conducting such

LES is by consideration of the "filtered density function" (FDF) which is essentially

the filtered fine-grained PDF of the transport quantities. In all previous contribu-

tions, the FDF of the "scalar" quantities is considered: Gao and O'Brien, a Colucci et

al., 6 R_veillon and Vervisch 7 and Zhou and Pereira 12 developed a transport equation

for the FDF in constant density turbulent reacting flows. Jaberi et al. s extended

the methodology for LES of variable density flows by consideration of the "filtered

mass density function" (FMDF), which is essentially the mass weighted FDF. The

fundamental property of the PDF methods is exhibited by the closed form nature

of the chemical source term appearing in the transport equation governing the FDF

(FMDF). This property is very important as evidenced in several applications of FDF

for LES of a variety of turbulent reacting flows. 6-1°'12 However, since the FDF of only

the scalar quantities are considered, all of the "hydrodynamic" effects are modeled. In

all previous LES/FDF simulations, these effects have been modeled via "non-FDF"

methods.

The objective of the present work is to extend the FDF methodology to also include

the subgrid scale (SGS) velocity vector. This is facilitated by consideration of the joint

"velocity filtered density function" (VFDF). With the definition of the VFDF, the

mathematical framework for its implementation in LES is established. A transport

3



equation is developedfor the VFDF in which the effectsof SGSconvectionareshown

to appearin closedform. The unclosedtermsin this equationaremodeledin a fashion

similar to thosein the Reynolds-averagedsimulation (RAS) procedures.A Lagrangian

Monte Carlo procedureis developedand implementedfor numericalsimulation of the

modeledVFDF transport equation. The consistencyof this procedureis assessedby

comparing the first two momentsof the VFDF with thoseobtained by the Eulerian

finite differencesolutionsof the samemomentstransport equations.The resultsof the

VFDF simulations arecomparedwith thosepredictedby the Smagorinsky16closure,

and the "dynamic" Smagorinskymodel,l>19The VFDF resultsarealso assessedvia

comparisonswith direct numericalsimulation (DNS) data of a three-dimensional(3D)

temporally developingmixing layer in a context similar to that of Vreman et a13°

This work dealswith LES of the velocity field in a constant density, non-reacting

flow. Considerationof the joint velocity-scalarFDF (or FMDF) in variable density,

chemicallyreacting flowswill be the subject of future work. It is in this context that

the approachhas its principal advantage:convectivetransport (of momentum and

species)is in closedform.

2 FORMULATION

In the mathematical description of incompressible (unit density) turbulent flows, the

primary transport variables are the velocity vector, ui(x,t) (i = 1,2,3), and the



pressure,p(x,t), field. The equations which govern transport of these variables in

space (xi) and time (t) are

Oui

Oxi

OUj OUiU j 019 O(Tij
__+ -- +__
Ot Oxi Oxj Oxi "

(1)

For a Newtonian fluid, the viscous stress tensor aij is represented by

=. \Oz, + Oxi/ ' (2)

where u is the kinematic viscosity and is assumed constant.

Large eddy simulation involves the spatial filtering operation 2>2a

+oo(f(x,t))m = f(x',t)G(x',x)dx',
O0

(3)

where g7 denotes the filter function, (f(x,t))L represents the filtered value of the

transport variable f(x, t), and f' = f - {f)L denotes the fluctuations of f from the

filtered value. We consider spatially and temporally invariant and localized filter

functions, thus gT(x',x) = a(x'-x) with the properties, 21 G(x) = a(-x), and

f-_o G(x)dx = 1. Moreover, we only consider "positive" filter functions 24 for which

all the moments ff__ xma(x)dx exist for m >_ 0. The application of the filtering



operation to the instantaneous transport equations yields

C_(Ui) L
--0,

_xi

Ot Oxi Oxj Ox_ Oxi

(4)

where TL(Ui,Uj) = (UiUj)L- (Ui)L(Uj)L denotes the "generalized SGS stresses". 18

These stresses satisfy _s

0 0 OTij_
b_[_L(_i,uj)] + _ [(uk)LU(_,,_)] = 0xk -- n,j + P_j- _. (5)

In this equation, Tij k .= TL(Ui, ?.tj Uk) -- 12 0--._--' Oxk [TL(Ui' %tj)] is the SGS turbulent trans-

port tensor where TL(Ui,Uj, Uk) = (UiUsUk)L- (U,)LTL(U.j,Uk)- (Uj)LTL(Ui, Uk)-

(Uk}LTL(Ui, US)- (Ui)L(Uj)L(UK)L. 18 The other terms are the SGS pressure-velocity

scrambling tensor, IIi2 = 7L(Ui, O__j)+ TL(Uj, _), the SGS production rate tensor,

_. _O(Uj)L O(Ui)L and the SGS dissipation rate tensor,Pit =--TL(Ui,ukl Ox_ --TL(Uj, Uk) O_k '

eij = 2PTL( 0--_- O-EZ-_
Oxk _ Oxk 1"



3 VELOCITY FILTERED DENSITY FUNCTION (VFDF)

A Definitions

The "velocity filtered density function" (VFDF), denoted by PL, is formally defined

as

f +eo
PL(V;x,t) = O[v,u(x',t)lG(x'- x)dx',

O0

3

D [V, U(X, t)] = _[V -- _t(X, t)] _ H (_[Vi -- Ui(X, t)]

i=1

(6)

where 5 denotes the delta function and v is the velocity state vector. The term

O[v, u(x, t)] is the "fine-grained" density, 25'26'11 and Eq. (6) defines the VFDF as the

spatially filtered value of the fine-grained density. With the condition of a positive

filter kernel, 24 PL has all the properties of the PDF. 26 For further developments, it is

useful to define the "conditional filtered value" of the variable Q(x, t) by

(Q(x,t)lu(x,t) = V>L-- (QJv>L =
f]+_ Q(x',t)o[v, u(x', t)] G(x'- x)dx',

pL(v;x,t)
(7)



where (alfi)L denotes the filtered value of a conditioned on ft. Equation (7) implies

(i)

(ii)

(iii)

For Q(x, t)=c,

For Q(x, t) - £)(u(x, t)),

Integral property :

(Q(x,t)lv)L=C,

(Q(x,t)lv)_ = (_(v), (8)

(Q(x, t))L = (Q(x,t)lv)LPL(v;x,t)dv,
O0

where c is a constant, and Q(x, t) = (_(u(x, t)) denotes the case where the variable Q

is completely described by the variable u(x, t). From these properties it follows that

the filtered value of any function of the velocity variable is obtained by integration

over the velocity space

(Q(x,t))i = Q(v)Pi(v;x,t)dv.
O0

(9)

B VFDF Transport Equation

The exact transport equation for the VFDF is derived in this section. Two forms of

this equation are considered similar to those previously developed in PDF methods? 7-31

The starting point is to consider the time-derivative of Eq. (6),

oPL(v;x,t)
Ot = _/_ Ou_(x',t) OQ[v,u(x',t)] G(x'- x) dx'

Ot Ovi

0 f_ O_,(x',t)
Ovi J__ Ot

0[v,_,(x',t)] a(x'- x) dx'.

(10)
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This combinedwith Eq. (7) yields

OPL(v;x,t) _ 0 [(OU_lv I PL(V;x,t)] .Ot OVi -_ L
(11)

Substituting Eq. (1) into Eq. (11) yields,

oPL(.;x,t)
Ot 0 iv}L _ova{i-(ou uk ; x,t)} .

(12)

With the relation

0 Ouiuk PL(V;x,t) = --vk Oxk '
OVi L

(13)

and decompositions

V_PL= (Uk)LPL+ [V_-- (_k)L]P_,

OP lv O(p)L pL + [< OP lv> L/ L PL - OX i _Xi

L OXk [L

O<cr,k)L ] PL,
Ozk J

(14)

the VFDF transport equation becomes,

DPL 0 O(p)L OPL O(aik}L OPL

Dt -- Oxk [(vk -- (Uk)L)PL] -t- OX i OV i OX k OV i

0
, (15)



o denotes the "filtered" material derivative.where Dot _- O_OOt+ (lZk)L _xk

Equation (15) is an exact transport equation for the VFDF. The first term on the

right hand side represents the SGS convection of the VFDF in physical space and

is closed. The second and third terms (which are also in closed form) represent

the convection in velocity space due to the resolved pressure gradient and molecular

diffusion, respectively. The last two terms are unclosed and denote convective effects

in the velocity space due to SGS pressure gradient and SGS diffusion.

Alternatively, the conditional diffusion term in Eq. (15) can be represented as:

[( ] O_PL(V;x't)
0 Ocriklv\ Pn(v;x,t) = u

Ovi _ / L OzkOzk OV i OVj l] aX k (_Xk L
x, t)] ,

(16)

in which the second term on the RHS involves the conditional expected dissipation.

With this, the alternate form of the VFDF transport equation is:

DPL
Dt

0 O(p}LOIL 02PL
Oxk [(vk - (u_)L)PL] + Ox, Ov, + " oxkox_

0

Ozi ] OviOvj [\ Ozk Ozk
(17)

Equation (17) is another exact transport equation for the VFDF. The first term on

the right hand side represents the SGS convection of the VFDF in physical space

and is closed. The second term corresponds to the convection in the velocity space

due to the resolved pressure gradient. The third term represents molecular diffusion

10



of the VFDF in physical space.The closureproblem is associatedwith the last two

terms. These represent,respectively,convection in velocity spaceby the unresolved

SGSpressuregradient, and diffusion in velocity spaceby SGSdissipationrate tensor.

C Modeled VFDF Transport Equations

The generalized Langevin model (GLM) 27'a2 is employed for closure of the VFDF

transport equation. Here we introduce two modeled VFDF equations, which are

denoted by "VFDFI" and "VFDF2." These are presented in order. To close Eq. (17),

VFDF1 is

0

0 1

-_-_ [ a,_ (vj - (us)L)PL ] + _ Coc --

+ _O(_dLO(_j)L O_P_
Oxk Oxk OviOvj

OViO'Oj OXk OXk L

02 pL

OViOVi

-t- 2U O(ui>L 02pL
Oxk OxkOvi"

(18)

To close Eq. (15), VFDF2 is:

Or, L\\O-_-__,/L o_, Oxk + Ox_--_

0 1 02pL

._ --_vi [ aij (vj - (Uj)L) PL ] + -_ Co e -OviOvi"
(19)

Note that these models (i.e., the first two terms on the right hand sides of Eqs. (18)

and (19) are the same, but that they model slightly different quantities. With this

11



closure,the two terms in Gij and _ jointly represent the SGS pressure-strain and SGS

dissipation. These are modeled as: 26'11

Gij=-w (_+_Co) 5ij, c=c_ka/2//kL, w=c/k.
(20)

= ½ L(u,,where w is the SGS mixing frequency, A L is the filter width, k ui) is the

!_.. is the SGS dissipation rate.SGS kinetic energy, and c = 2 ,,

With the GLM, the two forms of the VFDF transport equation are,

DPL
Dt

a a(p>LaPL a_PL a<_,>La<uj>_ a_P_
- Oxk [ (vk - (Uk>L) PL ] + axi Ovi +uOxkoxk + u Oxk Oxk aviOvj

20(ui}L 02PL 0 1 a2PL
+ axk axkav_ av, [ Gij (vj - (Uj)n) PL ] + -_ Co c av_av---_' (21)

for VFDF1, and

DPL
Dt

o O(p)_oPL o(o,k)_ oPL

0 1 02pL

o_ [ a_j (vj - (_j)_) p_ ]+ _ Co c bviO_,

(22)

for VFDF2. Hereinafter, Eqs. (21) and (22) are referred to as "VFDFI" and "VFDF2,"

respectively. The difference between these two equations is in the different treatment

of the closed viscous terms.
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D Transport Equations for Moments

The zeroth, first and second moment equations corresponding to these two formula-

tions are:

For VFDFI:

0(udL
Oxi

Ot Oxi Ox3 OxiOxi Oxi

(23)

+ a_k_L(ujuk) + aSL(_i, uk)- _(u_, uk)O(uj)L _L(_j,_k) O(_d____A+ Co_ 6_j.
' Ozk Oxk

(24)

For VFDF2:

O<ui)L _ 0,
Oxi

O<u2L+ o(ui)L(uj)L_ o(p)L+,°2(uJ>_ o_-_(u,,uj)
Ot Oxi C_Xj OXiOXi C_Xi '

(25)
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0 0

+ Gik_-_(u_,uk) + GSL(_i, _k) - _(_,, _k) 0(_j)L0zk _L(uj,uk) --
O(u,)L

OXk

It may be seen that the zeroth and first moment equations are identical (and exact);

whereas the second central moment equations differ by the additional viscous term

in VFDF1 (Eq. (24)). A comparison of these modeled equations with Eq. (5) shows

that the GLM model implies:

2

-l-l,j - (e_j- 5 e 6#) = - C1 2 k 5_j],_-L(_, _j ) - -5
3

C1 = 1 + :Co.
Z

(27)

This is the same as the Rotta aa model as shown by Pope. 34 There are two model

constants in the VFDF equation. In RAS, typically 34'a5 C_ _ 1, and Co _ 2.1(C1 =

4.15). As shown in Refs., a4'27 boundedness of the GLM coefficients Co > 0 guarantees

that the SGS stress is realizable.

4 EQUIVALENT STOCHASTIC SYSTEMS

The solution of the VFDF transport equation provides all the statistical information

pertaining to the velocity vector. The most convenient means of solving this equation

is via the Lagrangian Monte Carlo scheme. The basis of this scheme relies upon

14



the principle of equivalent systems.26'32Two systemswith different instantaneous

behaviorsmay haveidentical statistics and satisfy the samePDF transport equation.

In this context, the generaldiffusion processis consideredvia the following systemof

stochasticdifferential equations(SDEs),26'3<at'a1

dXi(t) = Di(X(t),Ll(t);t) dt + B(X(t),Lt(t);t) dW_(t),

dl4i(t) = Mi(X(t),lt(t);t) dt + E(X(t),Lt(t);t) dW_(t)

+ Fq(X(t),bl(t);t) dW_(t),

(28)

where .'Yi and b/i are probabilistic representations of the x and u, respectively. The

coefficients Di and Mi are the "drift" in the phase space of position and velocity, re-

spectively. The terms B and E are the "diffusion" coefficients for physical and velocity

spaces, respectively; and W_ and W[ denote independent Wiener-LSvy processes. 3s

The tensor Fij represents the dependency between the velocity and physical spaces.

This terms is needed to satisfy the It6 condition for B -_ 0. A comparison of the

Fokker-Planck equation of Eq. (28) with the the modeled VFDF1 transport equation,

Eq. (21) yields:

M/z
o(p) . o

Oxi + zv_ + Gij (Uj - (Uj)L), Di - Ui,

B=_ E- F,,-
Oxj

(29)
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Therefore,the proper SDEswhich representVFDF1 in the Lagrangian senseare:

dXi(t) = bli(t) dt + v/_ dW_(t),

dUi(t)=[ O(p)L ,, 02(udL 1• _ + -_'V_-_x_ + a_j (uj(t) - (_j)_)

+ vf _ O(Ui)L dWf(t).
Oxj

dt + _ dW_(t)

(30)

This stochastic system is the same as that developed by Dreeben and Pope 29-31 for

RAS.

For VFDF2, due to the absence of diffusion in physical space we must have B = 0.

Therefore, the corresponding SDEs are:

d,gi(t) = bli(t) dt

o(p),_
cllAi( t) = Oxi

O(aik)L + Gij (blj(t) - (Uj}L)] dt + V_oe dW(t).
+ Oxk J (31)

This system is the same as that suggested by Pope 26 and Haworth and Pope _7 for

RAS.

The primary difference between the two formulations VFDF1 and VFDF2 is due to

molecular effects in the spatial diffusion of the VFDF. This is explicitly included

in the VFDF1 formulation and is also present in the corresponding second moment

equation. This difference is expected to be important in flows where viscous effects

are important; e.g. flow near solid boundaries? 9-al Both of these formulation are

considered in our numerical simulations as discussed below.
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5 NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VFDF transport equation is obtained by a La-

grangian Monte Carlo procedure. The basis of this procedure is the same as that in

RAS 39-41 and in previous LES/FDF. °'s But there are some subtle differences which

are explained here. In the Lagrangian description, the VFDF is represented by an

ensemble of N statistically identical Monte Carlo particles. Each of these particles car-

ries information pertaining to its velocity U (n) (t) and position X (n)(t), n = 1, 2,... N.

This information is updated via temporal integration of Eq. (30). The simplest means

of performing this integration is via the Euler-Maruyamma approximation 42

X'_(tk+l) = X_(tk) + D_(tk)At + B'_(tk)(At)i/2C'_(tk),

U_(tk+l) = U_(tk) + M_(tk)At + En(tk)(At)l/2_(tk)

+ F_(tk)(At)l/2_'_(tk),

(32)

where D'_(tk) = Di(X(n)(tk),U(n)(tk);t), Bn(tk) = B(X(n)(tk),U(")(tk);t), "'" and

_(tk), 42(tk) are independent standardized Gaussian random variables. This formu-

lation preserves the Markovian character of the diffusion processes 4a'44 and facilitates

affordable computations. Higher order numerical schemes for solving Eq. (30) are

available, 42 but one must be cautious in using them for LES. ° Since the diffusion

term in Eq. (28) strongly depends on the stochastic processes, the numerical scheme

must be consistent with It6-Gikhman 45'4° calculus. Equation (32) exhibits this prop-
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erty.

The statistics are evaluatedby considerationof the ensembleof particles in a "finite

volume" centeredat a spatial location. This ensembleprovides "one-time" statistics.

This finite volume is characterizedby a cubic box of length AE. This is necessary

as, with probability one, no particle will coincide with the point as considered. 32

Here, a cubic box of size AE is used to construct the ensemble mean, variances and

covariances of the velocity vector. These values are used in the finite difference LES

solver of Eq. (4) as described below.

The SGS dissipation rate and the SGS mixing frequency as required in the solution

of the VFDF are evaluated on the finite difference grid points and interpolated to the

particle's location. Ideally, for reliable Eulerian statistics and minimum numerical

dispersion, it is desired to have the size of the sample domain infinitesimally small

(i.e. AE --_ 0) and the number of particles within this domain infinitely large. That

is,

1
PL(v;x,t) x,t) - Z 5(v- u(n)),

NE...._o o NE nEAE
A E.--).O

(33)

where PN_ is the Eulerian PDF constructed from the particle ensemble, n E AE

denotes the particles contained in an ensemble box of length AE centered at x; and

NE is the total number of particles within the box. With a finite number of particles,

obviously a larger AE is needed. This compromise between the statistical accuracy
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and dispersive accuracy implies that the optimum magnitude of AE cannot, in general,

be specified a priori? 6'11 This does not diminish the capability of the procedure, but

exemplifies the importance of the parameters governing the statistics.

To provide an estimate of the proper AE size, a "point estimator" procedure is con-

sidered. With this procedure, the mean values (the first moments of the VFDF) are

evaluated by ensemble averaging, and spatial variations of these mean values within

the box are ignored. With the discrete representation (Eq. (32)), the first two mo-

ments in this procedure are evaluated via:

1

N E -.-.>cx) WE

AE___O n6AE

N E -+ Oo

A E-+O

1

NE --- 1 _ (U_('_) -- (U_)E) (Uj (') - (Uj)E).
nEAE

(34)

The point estimator is obviously subject to both statistical errors and dispersive errors

for /kE _ 0.

To determine the pressure field, the "mean field solver" is based on the "compact pa-

rameter" finite difference scheme of CarpenterJ T This is a variant of the McCormack 4s

scheme in which fourth-order compact differences are used to approximate the spatial

derivatives, and a second order symmetric predictor-corrector sequence is employed

for time discretization. The numerical algorithm is a hyperbolic solver which consid-

ers a fully compressible flow. Here, the simulations are conducted with a low Mach

number (M <: 0.3) to minimize compressibility effects. All the finite difference opera-

19



tions are conducted on fixed and equally sized grid points. The transfer of information

from these points to the location of the Lagrangian particles is conducted via interpo-

lation. A second-order (bilinear) interpolation scheme is used for this purpose. The

results of previous work indicate no significant improvements with the use of higher

order interpolation schemes. 6

The mean-field solver also determines the filtered velocity field. That is, there is a

"redundancy" in the determination of the first filtered moments as both the finite

difference and the Monte Carlo procedures provides the solution of this field. This

redundancy is actually very useful in monitoring the accuracy of the simulated results.

Detailed discussions pertaining to this issue are provided in Refs. 8'a9 41

To establish the consistency of the VFDF solver, another LES is also conducted

in which the modeled transport equations for the filtered velocity and the general-

ized SGS stresses are solved strictly via the finite difference scheme. These simula-

tions are referred to as LES-FD and are only applied for the case corresponding to

VFDF2. That is, Eqs. (25) and (26) are considered. Since the SGS transport terms

rL(ui, uj, uk) are unclosed in Eq. (26), the values corresponding to these terms are

taken from the Monte Carlo solver and substituted in the SGS stress transport equa-

tions. The attributes of all of the scheme are summarized in Table 1, with further

discussions in Refs. 6'39-41
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6 RESULTS

A Flows Simulated

Simulations are conducted of a two-dimensional (2D) planar jet, and a 3D tempo-

rally developing mixing layer. The jet flow simulations are conducted primarily for

establishing the consistency of the Lagrangian Monte Carlo solver. For this purpose,

2D simulations are sufficient. To analyze the overall performance of the VFDF and

to demonstrate its full capabilities and drawbacks, 3D simulations are required.

In the planar jet, a fluid issues from a jet of width D into a co-flowing stream with

a lower velocity. The size of the domain in the streamwise (x) and cross-stream

(y) directions are 0 <_ x _< 14D and -3.5D _< y _< 3.5D. The ratio of the co-

flowing stream velocity to that of the jet at the inlet is kept fixed at 0.5. A double-

hyperbolic tangent profile is utilized to assign the velocity distribution at the inlet

plane. The formation of the large scale coherent structures are expedited by imposing

low amplitude perturbations at the inlet. In the finite difference simulations, the

characteristic boundary condition procedure of Ref. 49 is used at the inlet, free-shear

boundary conditions are used at the free-streams and the pressure boundary condition

of Ref. 5° is used at the outflow.

The temporal mixing layer consists of two parallel streams traveling in opposite direc-

tions with the same speed. 51-53 A hyperbolic tangent profile is utilized to assign the

velocity distribution at the initial time. The simulations are conducted for a cubic
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box, 0 < x < L, -L/2 < y _< L/2, 0 _< z < L, where x,y and z denote the stream-

wise, the cross-stream and the spanwise directions, respectively; and the length, L

is specified such that L = 2Np,ku, where Np is the desired number of successive vor-

tex pairings and A_, is the wavelength of the most unstable mode corresponding to

the mean streamwise velocity profile imposed at the initial time. The flowfield is

parameterized in a procedure somewhat similar to that by Vreman et al. 2° The for-

mation of the large scale structures are expedited through eigenfunction based initial

perturbations._4'5_ This includes two-dimensional _2'2°'_6 and three-dimensional _2'_7

perturbations with a random phase shift between the 3D modes. This results in the

formation of two successive vortex pairings and strong three-dimensionality.

The flow variables are normalized with respect to selected reference quantities. In

the jet flow, the jet exit velocity and the jet width are the reference scales. In

the temporal mixing layer, the reference length is the half initial vorticity thickness,

Lr -- _ ((_v -- AU where (Ul} L is the Reynolds averaged value of the
2 ' ]O(Ul)L/Oy[rnaz'

filtered streamwise velocity and AU is the velocity difference across the layer). The

reference velocity is Ur = AU/2.

B Numerical Specifications

All finite difference simulations are conducted on equally-spaced grid points with grid

spacings Ax = Ay = Az(for 3D) = A. The resolution for LES of the planar jet

consists of 201 × 101 grid points. This allows simulations with a Reynolds number
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Re = _ = 14,000. The simulations of the temporal mixing layer are conducted
V

on 1933 and 333 points for DNS and LES, respectively. This allows simulations with

Re = _ = 50.
V

To filter the DNS data, a top-hat function 21 of the form below is used

No

a(x'- x)= H
i=1

o Ix',- x_l< _ (35)
5(x'_- x_)= - 2 ,

2 '

in which No denotes the number of dimensions, and AL = 2A. 5s No attempt is made

to investigate the sensitivity of the results to the filter function _4 or the size of the

filter. 59

For VFDF simulations of the temporal mixing layer, the Monte Carlo particles are

initially distributed throughout the computational region. For the jet flow, the par-

ticles are supplied in the inlet region -1.75D < y < 1.75D. As the particles con-

vect downstream, this zone distorts as it conforms to the flow as determined by the

hydrodynamic field. The simulation results are monitored to ensure the particles

fully encompass and extend well beyond regions of non-zero vorticity with an ap-

proximately uniform particle number density. All simulations are performed with a

uniform "weight ''26 of the Monte Carlo particles. In the temporal mixing layer, due

to flow periodicity in the streamwise and spanwise directions, if the particle leaves
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the domain at one of theseboundariesnew particles are introduced at the other

boundary with the samecompositional values. In the cross-streamdirections, the

free-slipboundary condition is satisfiedby the mirror-reflection of the particles leav-

ing through theseboundaries.In the planar jet, newparticlesare introduced through

the inlet boundary at a rate proportional to the local flow velocity and with a velocity

makeupdependenton the cross-streamdirection only. When the particles leavethe

computational domain at the outflow, they areno longer tracked. The density of the

Monte Carlo particles is determined by the averagenumber of particles ArE within

the ensembledomain of sizeAE x AE(xAE). The effectsof both of theseparame-

ters areassessedto ensurethe consistencyand the statistical accuracyof the VFDF

simulations.

All results are analyzed both "instantaneously" and "statistically." In the former,

the instantaneouscontours (snap-shots)and scatter plots of the variablesof interest

are analyzed. In the latter, the "Reynolds-averaged"statistics constructed from the

instantaneousdata are considered. In the spatially developingflows this averaging

procedure is conducted via sampling in time. In the temporal mixing layer, the

statistics are constructed by spatial averagingover the x - z plane of statistical

homogeneity. All Reynolds averaged results are denoted by an overbar.
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C Consistency and Convergence Assessments

The objective of this sectionis to demonstratethe consistencyof the VFDF formula-

tion and the convergenceof its Monte Carlo simulation procedure.For this purpose,

the results via VFDF and LES-FD arecomparedagainsteachother. Sincethe accu-

racy of the finite differenceprocedureis well-established(at least for the first order

filtered quantities), sucha comparativeassessmentprovidesagood meansof assessing

the performanceof the Monte Carlo solution of the VFDF. This assessmentis done

for 2D simulations and for VFDF2 as they are sufficient for establishingconsistency

and convergence.To do so, the statistical results obtained from the Monte Carlo

simulations of Eq. (31) arecomparedwith the finite differencesolution of Eqs. (25)

& (26). Also, no attempt is made to determine the appropriate valuesof the model

constants; the valuessuggestedin the literature are adoptedz4 Co = 2.1(C1 = 4.15)

and C_ = 1.

In Fig. 1, the instantaneous contour plots of the vorticity are shown as determined by

(a) VFDF2 and (b) LES-FD. This figure provides a simple visual demonstration of

the consistency of the VFDF2. Scatter plots of (U)L vs. (V)L are presented in Fig. 2.

The correlation and regression coefficients (denoted, respectively, by p and r on these

figures) are insensitive to AE. Figures 3 and 4 show the Reynolds averaged values of

the streamwise velocity and several components of the SGS stress tensor for several

values of AE, with NE = 40 kept fixed. It is observed that the first filtered moments

as obtained by VFDF agree very well with those via LES-FD even for large AE values.

25



However,smaller A E values are required for convergence of the VFDF predicted SGS

stresses to those by LES-FD. The relative difference between the L2 norms of all of

the components of the SGS tensor as a function of (/kE/A) _ is presented in Fig. 5.

Extrapolation to A E = 0 shows that the "error" goes to zero as AE --+ 0.

The influence of NE on the first two moments is shown in Figs. 6 and 7. It is observed

that NE does not have a significant influence on the first moments, but does slightly

influence the second moments. In all the cases considered, NE > 40 yields reliable

predictions, consistent with previous consistency and convergence assessments of the

scalar FDF. 6,s

All the subsequent simulations are conducted with AE = A/2 and N_ = 40.

D Comparative Assessments of the VFDF

The objective of this section is to analyze some of the characteristics of the VFDF via

comparative assessments against DNS data. This assessment is done via both a priori

and a posteriori analyses. In the former, the DNS results are used to determine the

range of the empirical constants appearing in the VFDF sub-closures. In the latter,

the final results as predicted by the VFDF are directly compared with those obtained

by DNS. The procedure is similar to that in Ref? ° and considers the 3D temporal

mixing layer.

In addition to VFDF, three other LES are conducted with (1) no SGS model, (2) the
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Smagorinsky16'6°SGSclosure,and (3) the dynamic Smagorinsky17-19model. In the

casewith nomodel,the contribution of theSGSis completelyignored, i.e. rL(Ui, uj) =

0. In this case, the numerical errors amount to an implied model. But as indicated

in Ref., 2° this case is included to provide a point of reference for the other closures.

The Smagorinsky model is, 16'61

2

TL(Ui, ?_j) -- "_ k (_ij : --2 lJ t Sij,

1 O(Ui)L -t-

Sij = -_ OX-----7 OX i ] '

vt = C_, A _ S.

(36)

C_ = v_ 0.172 ,-_ 0.04, S = v/_Sij and A L is the characteristic length of the

filter. This model considers the anisotropic part of the SGS stress tensor aij =

rL(Ui, uj) -- 2/3 k _ij. The isotropic components are absorbed in the pressure field.

The dynamic version of the Smagorinsky model provides a means of approximating

C_ as suggested in Refs. 17 19 The procedure for the implementation of this model in

the 3D temporal mixing layer LES is described by Vreman; 2° thus it is not repeated

here. (See Refs. 11'23'62'6a for recent reviews on SGS closure strategy.)

In addition to the resolved velocity field, the primary integral statistical quantities

considered for comparative assessments are:

1E I -- -_(Ui)L(Ui)Ldx (37)
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Pk=f pkdx, with pk=--rL(ui,u) O(ui}L
a Oxj '

E_= c.dx, with _=v_ \ OXk + _ '

Bk = f rain(O, Pk) dx.
J

(38)

E] is the kinetic energy of the resolved field, ev represents the viscous molecular dis-

sipation rate directly from the filtered field, Pk is the production rate of the SGS

kinetic energy (or the rate of energy transfer from the resolved filtered motion to

the SGS motion), and Bk is the total backscatter. 64-66 The resolved molecular dis-

sipation rate is always positive (by definition), but the production rate of the SGS

kinetic energy can be locally negative. This backscatter is not represented in the

Smagorinsky model. The dynamic model is potentially capable of accounting for

it, but at the expense of causing numerical instabilities. In the implementation

of the dynamic model used here, backscatter is avoided by averaging the numera-

tor and denominator of the expression determining C, (Refs. 19'2°) over the homoge-

neous directions. If negative values are still present, they are set equal to zero. 2°'6a

The "resolved" components of the Reynolds-averaged stress tensor are denoted by

R 0 where Rij = ((Ui)L- (Ui)L)((Uj)L- (Uj)L). The "total" Reynolds stresses

are denoted by ri---7where rij = (Ui - -_i)(Uj - Uj). These are approximated by

ri---7._ Rij + TL(ui, Uj). 2°'67'6s In DNS, the total stresses are evaluated directly and the

results indicate that Rij + 7-L(Ui, Uj) does indeed approximate ri---jwith a maximum

error of less than 10%
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Figure 8 shows the distribution of the particle number density within the whole

computational domain. Assuring an approximately uniform distribution, the values

of the moments within local ensembles are compared with those of filtered DNS data.

These DNS data are transposed from the original high resolution 1933 points to the

low resolution of 333 points, and then are compared with LES results on these coarse

points.

The DNS data are also used to make a priori estimates of the model constants. The

primary terms which require closure are the SGS dissipation and the velocity-pressure

scrambling tensors. The model equation (Eq. (20)) involving CE is in a scalar form.

For an estimate of C1 (thus Co), we consider the following norm of the corresponding

closure (Eq. (27)):

2 2
(39)

where IlWijll = v/WjiW, j. To estimate the coefficients, a linear regression is performed

on all the data points at each computational time step. The optimized constants as

obtained in this way are denoted by C_ and C1. This procedure is also followed for

the Reynolds averaged data, with the optimized models obtained in this way denoted

by C---_and C--1. The temporal variations of these estimated values are shown in Fig. 9.

The non-uniformity of the coefficients indicates the "non-universality" of the models.
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This is expected as the flow evolves from an initially smooth laminar state to a strong

three-dimensional state (at t _ 40) before the action of the small scales becomes

significant. The closures as adopted are not fully suitable for application in all of

these flow regions. Nevertheless, Fig. 9 indicates that the values for these coefficients

as suggested in RAS, i.e. C1 _ 4.15, C_ _ 1 are reasonable, at least within the

turbulent regime. The influences of these parameters are further investigated via a

posteriori analysis of the results as discussed below.

Figures 10 and 11 show the contours of the spanwise and the streamwise components

of the vorticity field, respectively, at time t = 80. By this time, the flow has gone

through several pairings and exhibits strong 3D effects. This is evident by the for-

mation of large scale spanwise rollers with presence of counter-rotating streamwise

vortex pairs in all the simulations. The results via the no-model indicate too many

small-scale structures which clearly are not captured accurately on the coarse grid.

The amount of SGS diffusion with the Smagorinsky model is very significant at initial

times. Due to this dissipative characteristics of the model, the predicted results are

too smooth and only contain the large scale structures. The vortical structures as

depicted by the dynamic Smagorinsky and the VFDF are very similar and predict

the DNS results better than the other two models. The results obtained by VFDF1

and VFDF2 are virtually indistinguishable from each other. This is expected, due to

the lack of importance of molecular effects in this free shear flow.

The Reynolds averaged values of the streamwise velocity and the temporal variations
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of the momentum thickness:

1 fL/2
6re(t) = _ a-L�2 ( 1 - (U)L ) ( 1 + (U)L ) dy,

(4o)

are shown in in Figs. 12 and 13, respectively. In Fig. 12 the Reynolds averaged values

of both filtered and unfiltered DNS data are considered and are shown to be essentially

equivalent. Therefore, the latter are not shown in subsequent figures. The dissipative

nature of the Smagorinsky model at initial times resulting in a slow growth of the

layer is shown. Several values of the model parameters (Co, CE) are considered in the

VFDF simulations. It is observed that as the magnitude of C_ decreases, the initial

rate of the layer's spread is higher. With the exception of the case with C_ = 0.5 and

the Smagorinsky model, all the other VFDF cases, the dynamic Smagorinsky and the

no-model yield a similar rate of layer's growth at late times.

The temporal variations of the resolved kinetic energy and all of the terms defined in

Eq. (38) are shown in Fig. 14. The overall features displayed in this figure are similar

to those reported by Vreman et al. 2° for the no model, the Smagorinsky model and the

dynamic Smagorinsky model. The initial rate of decay of the resolved kinetic energy

for the Smagorinsky model is the highest. This is due to the excessive production

of the SGS kinetic energy by this model in the transitional region, and explains

the reason for the lack of small scales in the vortical structures as discussed before.

For all the other models the initial rate of decrease of the resolved kinetic energy

is small and increases as the flow develops. The trend portrayed by DNS results is
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best captured by the VFDF simulations. For the no model casethe only meansof

dissipation of the resolvedkinetic energy is through molecular action and numerical

dissipationwhich becomesignificantat later stagesdueto presenceof a largeamount

of small scales.In this case,the amount of numericaldissipation is the highest. For

all the other closures,the productions rate of the SGSkinetic energy is larger than

the molecular dissipation as the flow develops. The dynamic Smagorinskyand the

no-modelsimulations predict the sameinitial rate of decay for the resolvedkinetic

energy.This is due to low initial valuesof Pk predicted by the dynamic Smagorinsky

model. After t = 40 the amount of Pk as predicted by the dynamic model is more

than that of molecular dissipation by the no-model. Thus the rate of decay of the

resolved kinetic energy becomes higher for the dynamic model and is closer to that

obtained by DNS.

With the exception of the no-model case, all the simulations predict similar trends for

the molecular dissipation. The magnitude of this dissipation as predicted by VFDF

changes slightly with the variation of the model parameter. The production rate of the

SGS kinetic energy depends more strongly on the model coefficients; as C_ decreases,

the peak magnitude of Pk is larger. The Smagorinsky model does not adequately

predict Pk, and the dynamic model yields better predictions at long times. The overall

trends are best predicted by VFDF. The same is true in capturing the backscatter

phenomenon. By design, the backscatter is identically zero in the Smagorinsky and

the dynamic Smagorinsky model. But VFDF is capable of capturing it, and its extent
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is controlled by the model parameters. In this regard it is important to note that

there are no numerical instability problems in the VFDF solver for negative Bk values.

However, the amount of predicted backscatter is less than that of DNS and its relative

magnitude is less than those of Pk and E_.

Several components of the planar averaged values of the SGS anisotropy tensor, a/---7 =

TL(Ui, Uj) -- 2/3 k (_ij are presented in Figs. 15 & 16. Both the Smagorinsky and

the dynamic model under-predict all of the components of this stress. The VFDF

predictions are much more satisfactory. In this regard, the VFDF is expected to be

more effective than the other closures for LES of reacting flows since the extent of

SGS mixing is heavily influenced by SGS convection. °9'r° "Optimum" values for C_

and Co cannot be suggested to predict all of the components of this tensor at all

times, but it is obvious that there is too much SGS energy with C_ = 0.5.

Several components of the resolved stress tensor Ri---7are shown in Figs. 17 & 18. As

expected, the performance of the Smagorinsky model is not very good as it does not

predict the spread and the peak value of the resolved Reynolds stresses. None of

the other models show a distinct superiority in predicting the DNS results. The no-

model and the dynamic Smagorinsky model predict large peak values at the middle

of the layer. The VFDF predicts both the spread and the peak values reasonably

well. The results for small Ce values are not shown since the amount of energy in

the resolved scale decreases too much in favor of the increase of the SGS stress (as

shown in Figs. 15 & 16). The cross-stream variations of the total Reynolds stress
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are presented in Figs. 19. The peak values by the no-model simulations are again

the highest. The dynamic model and VFDF perform similarly and capture the DNS

trends equally well.

E Comparison with Previous Investigations

All of the results obtained here by DNS, and LES via the Smagorinsky and the dy-

namic Smagorinsky models agree very well with those of Vreman et al? ° The slight

differences are due to the non-identical flow initializations, and the different compu-

tational methodologies employed in the two simulations. To compare with results

of other investigations, simulations are conducted of another temporally developing

mixing layer with Re = 500 in a larger computational domain, Lr = 120. An ini-

tial forcing of the form Ae -(y/2)2 is used, where .A is a uniformly distributed random

number with an amplitude of 0.05. Rogers and Moser 6° perform DNS of a high Re

number flow on 512 x 210 x 192 spectral points. The results of these simulations

are in excellent agreements with laboratory data of Bell and Mehta. 71 Here, LES is

conducted of this flow via the dynamic Smagorinsky model.

The profiles of the mean streamwise velocity and several components of the resolved

stresses at t = 250 are presented in Figs. 20 and 21, respectively. In these figures,

= y/Sin(t) and the symbols denote the experimental data n at several streamwise

locations. The good agreement with these data also indicates good agreement with

DNS results of Rogers and Moser. 72
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F Computational Requirements

The total computational timesassociatedwith simulationsof the 3D temporal mixing

layer are shown in Table 2. Expectedly, the overheadassociatedwith the VFDF

simulation is extensiveascomparedto the othermodels;neverthelessthis requirement

is significantly lessthat of DNS. This overheadwastolerated in presentsimulations,

but can be reducedwith utilization of an optimum parallel simulation procedure.

This has been discussedfor use in PDF73 and is recommended for future VFDF

simulations.

7 SUMMARY AND CONCLUDING REMARKS

The filtered density function (FDF) methodology 1 has proven very effective for large

eddy simulation (LES) of turbulent reacting flows, a'6-11 In all of previous contribu-

tions, the LES/FDF of only the scalar quantities are considered. The objective of the

present work is to develop the FDF methodology for LES of the velocity field. For

this purpose, a methodology termed the velocity filtered density function (VFDF)

is developed. The VFDF is basically the probability function (PDF) of the subgrid

scale (SGS) velocity vector. The exact transport equation governing the evolution of

the VFDF is derived. It is shown that the effects of SGS convection in this equation

appears in a closed form. The unclosed terms in this transport equation are modeled

via two formulations: VFDF1 and VFDF2. The primary difference between the two
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modelsis the inclusionof the moleculardiffusion in the spatial transport of the VFDF

in the first formulation. The closurestrategy in the formulation similar to that in

PDF methodsin Reynoldsaveragedsimulation (RAS) procedures.32In this way, the

VFDF formulation is at leastequivalent to a second-ordermoment SGSclosure.

The modeled VFDF transport equations are solved numerically via a Lagrangian

Monte Carlo scheme in which the solutions of the equivalent stochastic differential

equations (SDEs) are obtained. Two Monte Carlo procedures are considered. The

schemes preserve the It6-Gikhman nature of the SDEs and provide a reliable solution

for the VFDF. The consistency of the VFDF formulation and the convergence of

its Monte Carlo solutions are assessed. This is done via comparisons between the

results obtained by the Monte Carlo procedure and the finite difference solution of

the transport equations of the first two filtered moments of VFDF (LES-FD). With

inclusion of the third moments from the VFDF into the LES-FD, the consistency and

convergence of the Monte Carlo solution is demonstrated by good agreements of the

first two SGS moments with those obtained by LES-FD.

The VFDF predictions are compared with those with LES results with no SGS model,

with the Smagorinsky 16 SGS closure, and with the dynamic Smagorinsky 17-19 model.

All of these results are also compared with direct numerical simulation (DNS) results

of a three-dimensional, temporally developing mixing layer in a context similar to

that conducted by Vreman et al. 2° This comparison provides a means of examining

some of the trends and overall characteristics as predicted by LES. It is shown that

36



the VFDF performswell in predicting someof the phenomenapertaining to the SGS

transport. The magnitude of the SGS Reynoldsstressesas predicted by VFDF is

significantly larger than those predicted by the other SGSmodelsand much closer

to the filtered DNS results. The temporal evolution of the production rate of the

SGSkinetic energyis predictedwell by VFDF ascomparedwith thosevia the other

closures.The VFDF is also capableof accountingthe SGSbackscatterwithout any

numericalinstability problems,although the level predicted is substantially lessthan

that observedin DNS.

The resultsof a priori assessmentagainst DNS data indicates that the valuesof the

modelcoefficientsasemployedin VFDF (Coand Ce) are of the range suggested in the

equivalent models previously used in RAS. The results of a posteriori assessments via

comparison with DNS data does not give any compelling reasons to use values other

than those suggested in RAS, Co = 2.1, C_ = 1. However, small values of C_ are not

acceptable as they would yield too much of SGS energy relative to that within the

resolved scales.

Most of the overall flow features, including the mean velocity field and the resolved

and total Reynolds stresses as predicted by VFDF are similar to those obtained via the

dynamic Smagorinsky model. This is interesting in view of the fact that the model

coefficients in VFDF are kept fixed. It may be possible to improve the predictive

capabilities of the VFDF by two ways: (1) development of a dynamic procedure to

determine the model coefficients, and/or (2) implementation of higher order closures
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for the generalizedLangevin model parameterGij (see Ref.34).

Work is in progress towards developments of a joint velocity-scalar FDF for LES

of reacting flows. Compared to standard LES, this approach has the advantage of

treating reaction in a closed form; and, compared to scalar FDF 6's has the advantage

of treating convective transport (of momentum and species) in closed form. These

modeling advantages have an associated computational penalty. For the cases consid-

ered here, VFDF is more expensive computationally than the dynamic Smagorinsky

model by a factor of 15. It is expected that VFDF will not be more expensive than

scalar FDF, at least for reacting flows with many species.
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VFDF1

VFDF2

LES-FD

Finite
difference
variables

Particle
solver

variables

Xi

gi

Particle statistics

used by the finite

difference solver

Finite difference

variables used by

particle solver

o(p)_
(_dL, --

Oxi

O(?_i)L 02(_i)L

Oxk 'OxkOxk

O(p) L

02(Ui)L

OzkOx_,

O(p>L
(ui)L, Oxi

02(ui)L
OxkOxk

Redundant

quantities

Ui> L

Ui) L

(_dL

Table 1: Recapitulation of the VFDF solution procedures.
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DNS
VFDF1
VFDF2

Dynamic Smagorinsky
Smagorinsky

No model

Resolution ArE I Normalized CPU time
193 x 193 x 193 - 178

33 x 33 x 33 40 33.6

33 x 33 x 33 40 30

33 x 33 x 33 - 2.19

33 x 33 x 33 - 1.05

33 x 33 x 33 - 1

Table 2: Computer requirements for the 3D temporal mixing layer. 1 unit corresponds

to 1657.2 seconds of CPU time on the SGI Origin 2000.
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FIGURE CAPTIONS

Figure 1. Plot of the vorticity field contours, (a) VFDF2, (b) LES-FD. AE =

A, NE=40.

Figure 2. Scatter plots of the filtered velocity field as obtained via VFDF2 vs.

LES-FD. (a), (u)L; (b), (V)L. AS = A, ArE = 40.

Figure 3. Reynolds averaged values of the filtered streamwise velocity. (a)

Cross-stream variations at x = 7, (b) streamwise variation at y = 0 (center-

line). ArE = 40.

Figure 4. Cross-stream variations of the Reynolds averaged values of some of

the components of the SGS stress tensor at x = 7 with NE = 40. The LES-FD

results are obtained with AE = 0.5A, ArE = 40.

Figure 5. Percentage of the relative difference between the L2 norms of the

stresses as a function of __z (a) x = 2.8, (b) x = 7, (c) x = 11.2.A"

Figure 6. Cross-stream variations of the Reynolds averaged values of the filtered

streamwise velocity at x = 7. The LES-FD results are obtained with AE =

0.5A, NE = 40.

Figure 7. Cross-stream variations of the Reynolds averaged values of some of

the components of the SGS stress tensor at x = 7. The LES-FD results are

obtained with AE = 0.5A, ArE = 40.
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Figure 8. Particle number density in VFDF2 simulation at t = 60. The iso-

surface corresponds to NE = 40 set as initial conditions. Co = 2.1, C_ = 1.

Figure 9. Time variation of the model coefficients as obtained from a priori

analysis of the DNS data.

Figure 10. Contour plots of the spanwise component of the vorticity at z =

0.75L/Lr, t = 80. (a) filtered DNS, (b) no model, (c), Smagorinsky model,

(d) dynamic Smagorinsky model, (e) VFDF2, Co = 2.1, C_ = 1, (f) VFDF1,

Co=2.1, C_=1.

Figure 11. Contour plots of the streamwise component of the vorticity vector at

x = 0.25L/Lr, t = 80. (a) filtered DNS, (b) no model, (c) Smagorinsky model,

(d) dynamic Smagorinsky model, (e) VFDF2, Co = 2.1, C_ = 1, (f) VFDF1,

Co=2.1, C_=1.

Figure 12. Cross-stream variations of the Reynolds averaged values of the

streamwise velocity at t = 70.

Figure 13. Temporal variations of the momentum thickness.

Figure 14. Temporal variations of (a) total resolved kinetic energy, (b) SGS

kinetic energy production rate, (c) total backscatter, (d) total resolved dissipa-

tion.

Figure 15. Cross stream variations of some of the components of _ at t = 60.
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Figure 16. Cross-streamvariationsof someof the componentsof _ at t = 80.

Figure 17. Cross-stream variations of some of the components of Rij at t = 60.

Figure 18. Cross-stream variations of some of the components of Rij at t = 80.

Figure 19. Cross stream variations of r-_12,(a) t = 60, (b) t = 80.

Figure 20. Cross stream variation of the Reynolds averaged values of the stream-

wise velocity at t = 250. Solid line denotes model predictions via the dynamic

Smagorinsky model. Symbols denote experimental data of Bell and Mehta. rl

Figure 21. Cross stream variations of the Reynolds averaged values of the

streamwise velocity at t = 250. Solid lines denote model predictions via the

dynamic Smagorinsky model. Symbols denote experimental data of Bell and

Mehta. 71
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Figure 1: Plot of the vorticity field contours, (a) VFDF2, (b) LES-FD. AE = A, NE =

40. (Gicquel et al., Physics of Fluids.)

54



(a)

¢xl

r_
LI_
>

(b)

1.1

0.9

0.7

0.5

' I i I

p = 1.000
r= .

, J , I ,

0.5 0.7 0.9

LES-FD

.1

11
121
LI_
>

0.20

0.10

0.00

-0.10 [

-0.20

I I I

p = 0.996 o

-0.20 -0.10 0.00 0.10

LES-FD

0.20

Figure 2: Scatter plots of the filtered velocity field as obtained via VFDF2 vs. LES-

FD. (a), {U}L; (b), (V)L. AE = A, NE = 40. (Gicquel et al., Physics of Fluids.)

55



(a)

(b)

...J

A

--s
V

..J
O

#

V

1.10

1.00

0.90

0.80

0.70

0.60

0.50

1.00

0.98

0.96

0.94

LES-FD
&E = 2A

_z_---._A E = .

-2.0 -1.0 0.0 1.0

Y

2.0

0.92 ......
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

X

Figure 3: Reynolds averaged values of the filtered streamwise velocity. (a) Cross-

stream variations at x = 7, (b) streamwise variation at y = 0 (center-line). N_ = 40.

(Gicquel et al., Physics of Fluids.)

56



-- LES-FD

AE=2A

D-----U AE=A

(a)

(b)

(e)

0.005

0.00375

0.0025

0.00125

0.0025

0.0

Y

0.0020

0.0015

0.0010

0.0005

0.0000
-2.0 -1.0

0.0012

i

0.0 1.0 2.0

0.0006

0

-0.0006

-0.0012
-2.0 -1.0 0.0 1.0 2.0

Y
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Figure 8: Particle number density in VFDF2 simulation at t = 60. The iso-surface

corresponds to NE = 40 set as initial conditions. Co = 2.1, C_ -- 1. (Gicquel et al.,

Physics of Fluids.)
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Physics of Fluids.)

74



(a)

0.03

b 0.02

0.01

(c)

5

,;%,

-3 -1 1 3 5

0.025!

0.020 i

0.015

0.010

0.005

0.000
-5

" /q_,

,/ \:
.,/ \"

-3 -1 1 3 5

(b)

b
<3

(d)

b

0.020

0.015

0.010

0.005

0.000
-5 -3 -1 1 3 5

0.000

-0.002

-0.OO4

-0.006

-0.008

-0.010
-5

I,m!

-3 -1 1 3 5

Figure 21: Cross stream variation of the resolved Reynolds stresses at t = 250. Solid

lines denote model predictions via the dynamic Smagorinsky model. Symbols denote

experimental data of Bell and Mehta. 71 (Gicquel et al., Physics of Fluids.)

75



Appendix II

This Appendix is submitted for publication.

15



Velocity-Scalar Filtered Density Function for Large Eddy

Simulation of Turbulent Flows

M.R.H. Sheikhi, T.G. Drozda, and P. Givi*

Department of Mechanical and Aerospace Engineering

University at Buffalo, SUNY

Buffalo, NY 1_260-_400

S.B. Pope

Sibley School of Mechanical and Aerospace Engineering

Cornell University

Ithaca, NY 14853-1301

(Dated: August 5, 2002)



Abstract

A methodology termed the "velocity-scalar filtered density function" (VSFDF) is developed and

implemented for large eddy simulation (LES) of turbulent flows. In this methodology, the effects

of the unresolved subgrid scales (SGS) are taken into account by considering the joint probability

density function (PDF) of the velocity-scalar field. An exact transport equation is derived for the

VSFDF in which the effects of the SGS convection and chemical reaction are closed. The unclosed

terms in this equation are modeled. A system of stochastic differential equations (SDEs) which

yields statistically equivalent results to the modeled VSFDF transport equation is constructed.

These SDEs are solved numerically by a Lagrangian Monte Carlo procedure in which the It6-

Gikhman character of the SDEs is preserved. The consistency of the proposed SDEs and the

convergence of the Monte Carlo solution are assessed by comparison with results obtained by a

finite difference LES procedure in which the corresponding transport equations for the first two

SGS moments are solved. The VSFDF results are compared with those obtained via other SGS

closures, and all the results are assessed via comparison with data obtained by direct numerical

simulation (DNS) of a temporally developing mixing layer involving transport of a passive scalar. It

is shown that the values of both the SGS and the resolved components of all second order moments

including the scalar fluxes are predicted well by VSFDF. The sensitivity of the model's (empirical)

constants are assessed and it is shown that the magnitudes of these constants are ill the sam(' _'_I,_('

as that typically employed in PDF methods.
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I. INTRODUCTION

The probability density function PDF) approachhasproven useful for largeeddy sim-

ulation (LES) of turbulent reacting flows [1]. The formal meansof conducting suchLES is

by considerationof the "filtered densityfunction" (FDF) [2] which is essentiallythe filtered

fine-grainedPDF of the transport quantities. In all previouscontributions, the "marginal"

FDF of the scalars[3-15], or the marginal FDF of the velocity vector [16] are considered;

see Givi [17] for a recent review.

The objective of the present work is to extend the FDF methodology to account for the

"joint" subgrid scale (SGS) velocity-scalar field. This is facilitated by consideration of the

joint "velocity-scalar filtered density function" (VSFDF). With the definition of the VSFDF,

the mathematical framework for its implementation in LES is established. A transport

equation is developed for the VSFDF in which the effects of SGS convection and SGS

chemical reaction (in a reacting flow) are closed. The unclosed terms in this equation are

modeled in a fashion similar to those in the Reynolds-averaged simulation (RAS) procedures.

A Lagrangian Monte Carlo procedure is developed and implemented for nutnerical simulation

of the modeled VSFDF transport equation. The consistency of this procedure is assessed

by comparing the first two moments of the VSFDF with those obtained by the Eulerian

finite difference solutions of the same moments' transport equations. The results of the

VSFDF simulations are compared with those predicted by the Smagorinsky [18] closure. All

the results are assessed via comparisons with direct numerical simulation (DNS) data of a

three-dimensional (3D) temporally developing mixing layer involving transport of a passive

scalar variable.

II. FORMULATION

For the general formulation, we consider an incompressible (unit density), isothermal.

turbulent reacting flow involving N_ species. The primary transport variables describing

such a flow are the three components of the velocity vector ui(x, t) (i = 1,2, 3), the pressm'o

p(x,t), and the species' mass fractions ¢o(x,t) (a = 1,2,...,N_). The equations which



governthe transport of thesevariablesin space(xi) and time (t) are

OUk

Oxk

Oui Oukui Op Oaik
__+ -- +__
Ot Ox_ Oxi Oxk

OG OukG _ Og_
0--7+ Ozk Oxk + S_

-0 (la)

(lb)

(lc)

where S_ = S_(¢(x,t)) denotes the chemical reaction term for species a, and _ -

[¢1, ¢2,..., ¢Ns] denotes the scalar variable array. For an incompressible, Newt onian fluid,

with Fick's law of diffusion, the viscous stress tensor c% and the scalar flux JOk are repre-

sented by

_k = v \Oxk + Ox_] (2a)

_r °¢_ (2b)
d_ = Ozk

where u is the fluid kinematic viscosity and F = _ is the diffusion coefficient of all species

with Sc denoting the molecular Schmidt number. We assume a constant value for u = 1-';

that is Sc = 1. In reactive flows, molecular processes are much more complicated than

portrayed by Eq. (2). Since the molecular diffusion is typically less important than that of

SGS, this simple model is adopted with justifications and caveats given by in Refs. [19-21].

Large-eddy simulation involves the spatial filtering operation [22-25]

(f(x,t))= f+°_f(x',t)_(x',x)dx ' (3)

where _(x', z) denotes a filter function, and (f(x, t)} is the filtered value of the transport

variable f(x, t). We will consider a filter function that is spatially and temporally invariant

and localized, thus: _(x',x) - G(x'- x) with the properties G(x) >_ 0, f+__ G(x)dxl, and

moments f+_ zmG(x)dx exist for m > 0. Applying the filtering operation to Eqs. (1) yields

O(uk) _ 0 (4a)
Oxk

__0{u,) + 0 {uk) (u,) _ 0 {p) + u--02 (u,) Or(uk, ui) (4b)
Ot Oxk Oxi OxkOxk Oxk

__0(¢_} -t- O(uk}(¢_) -- u--CO2(¢o) Or(uk,¢o) -t-(S=) (4c)
Ot Oxk OxkOxk Oak



where the second-order SGS correlations

z(a,b) = (ab) - (a) (b) (5)

are governed by

Or(ui, uj)
+

Ot

0,-(_i,¢_)
+

Ot

0.( ¢., ¢e)
+

Ot

Oxk OxkOxk
T(_k,_)_) T(_,k,_j)0<_,)0X_

+" @' 03-_,)]- °_(_'_'_J)0x_

Oxk OxkOxk u,_ Oxk

2r, Ox_'_ ] + _ ¢='-g-_x_ + ,(_,,so) -

cOxk

OT(_, Hi,¢_)
OXk

Oxk OxkOxk Oxk CZ) 0_'_

(6a)

(6b)

(6c)

In this equation, the third order correlations

r(a,b,c) = (abc)- (a) r(b,c)

-(b) r(a, c)- (c)7(a,b)- (a)<b)(c) (7)

are unclosed along with the other terms within square brackets.

III. VELOCITY-SCALAR FILTERED DENSITY FUNCTION (VSFDF)

A. Definitions

as

The "velocity-scalar filtered density function" (VSFDF), denoted by P, is formally defined

e(_,O;x,t): f+_ _(_,o;u(x',t),O(x',t))C(x'- x)dx'
3 N_

e(,,, 0; u(x,t), _(x, t))= 1-I6(._- u,(x, t)) x H _(¢- - ¢o(x,t))
i=1 c_=1

(s)

(9)



where _ denotesthe delta function, and v, _ are the velocity vector and the scalar array

in the sample space. The term Q is the "fine-grained" density [20, 26], hence Eq. (8)

defines VSFDF as the spatially filtered value of the fine-grained density. With the condition

of a positive filter kernel [27], P has all of the properties of the PDF [20]. For further

developments it is useful to define the "conditional filtered value" of the variable Q(x, t) as

(Q(x,t) u(x,0 = v,¢(x,t)=¢} Q v,¢}

f+_ Q(x',t)o(v,¢;u(x',t),¢(x',t))G(x'- x)dx'

P(v,¢;x,t)

(10)

Equation (10)implies the followings:

(i) for Q(x,t) = c,

(ii) for Q(x,t) = (_(u(x,t),¢(x,t))

(iii) Integral properties:

(Q(x, t) v,¢/=c (lla)

(Q(x,t)]v,_} = Q(v,¢) (lib)

(0(x,),:l: ,)v¢l ¢;x
(llc)

From Eqs. (11) it follows that the filtered value of any function of the velocity and/or scalar

variables is obtained by its integration over the velocity and scalar sample spaces

[+co O,(v, _)P(v, ¢; x,t)dvd¢ (12)(Q(x,t)) =

B. VSFDF Transport Equations

To develop the VSFDF transport equation, we consider the time derivative of the fine-

grained density function (Eq. (9))

Ot - \Or Ovk + Ot 0_, ,i

Substituting Eqs. (lb-lc), and Eqs. (2a-2b) into Eq. (13) we obtain

Oco Oukco (Op oq2ui "_ O0 [" 02¢_ ) OLo (14)o-7+ Ox_ - _, "Ox-77_)_- i,"o_ox_ + s_(¢') -o_,o



Integration of this according to Eq. (8), while employing Eq. (10) results in

OP OvkP
--+
at Oxk

_ O(p) OP 0 [So(_;')P]
Oxk Ovk 0_/,_

0

0 0,0oo/,)0*k0*kv, (15)

This is an exact transport equation for the VSFDF. It is observed that the effects of convec-

tion (second term on LHS) and chemical reaction (the last term on RHS) appear in closed

forms. The unclosed terms denote convective effects in the velocity-scalar sample space.

Alternatively, the VSFDE equation can be expressed as

OP OvkP
--+
Ot Oxk

02P 0 (p) OP 0
_--+ [so(_)P]

OxkOxk Oxk Ovk 0_

/J

2 0viO_ [\ Oxk Oxk v, _ P

0e_000 L\ _ 0._
(16)

This is also an exact equation, but the unclosed terms are exhibited by the conditional

filtered values of the dissipation fields as shown by the last three terms on the RHS.
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C. Modeled VSFDF Transport Equation

For closure for the VSFDF transport equation, we consider the general diffusion process

[28], given by the system of stochastic differential equations (SDEs):

dX+(t) = Dx(X+,U+,¢+;t)dt + Bix(x+,u+,¢+;t)dwx(t)

+ F,_jx_(x+ ,v+, ¢+;t)dWf(t) + F,_¢(X+,V+,_+.t)dWg(t), (17a)

+ t)dWf(t)dUi+(t) = D_(X+,U+,¢+;t)dt + Bo(X ,U+,¢+;

ux + t)dW x F,_¢(X + U + 6 + )dl,t_(/) (17t,)+ F 0 (X ,U +,¢+; (t)+ , , '/

4' + ' +. "_
, _)d¢+(t) = DC(X + U+,¢+;t)dt+B_j(X ,U +, t)dI,i,j'(t)

+ Fcf(X+,U+,¢+;t)dWfi(t)+ F2)'(X+,U+,O+;t)dWjU(I ) (17c)

where X +, U+, ¢+ are probabilistic representations of position, velocity vector, and scalar

variables, respectively. The D terms denote drift in the composition space, The B terms de-

note diffusion, the F terms denote diffusion couplings, and the W terms denote the Wiener-

L6vy processes [29, 30]. Following Haworth and Pope [31], Dreeben and Pope [32], Colucci et

al. [7], and Gicquel et al. [16] we consider the generalized Langevin model (GLM) and the

linear mean square estimation (LMSE) model [26]

dX + = U +dt + v/-_dWi x

dU: = [O<p> o_<_,) ]_x_ + "_Yx[gx_+ a`j (UJ-- <_'j) as

+ %/Va--_Xk avvk +

d + [02(¢_)¢o= uS, OxkOxk Ccw(¢+-(¢_'})+S_(!b)] dt

+ ,/vs_ -O-22k

where the variables ul, us,.., are all diffusion coefficients (to be specified), and

G 0 =-w +_Co 6_j _=-_

k3/2 iT
-- k -- (_k,'ak)

¢= Ce AL 2

(18a)

(18b)

(18c)

(19)

Here a_ is the SGS mixing frequency, e is the SGS dissipation rate, k is the turbulent kinetic

energy, and AL is the LES filter size. The parameters Co, C¢ and C_ are model constants



and needto be specified.The Fokker-Planck[33]equation for the diffusion processasgiven

by Eq. (18) is:

Of 0

Ot -t- _ (vkf) =

+

+

O{p> (u2- Uv/-U--_)02 <u,> Of
Oxi OxkOxk Ovi

02(¢0) Of 0 [C_(_'o-(¢o))/]---[.s, - _,/-_:]OxkOxk0_o +
Lt 1 02f __O (uj) 02f 0 (¢o) 02f

20xkOxk + V'aUa -0--_ Ox_Ov_+ _ Ox_ Ox_OOo

u3 0 (u,) 0 (uj) 02f 1 ,_ 02f __0 (ui) 0 (¢o)

0
Ot'i [Gij (vj - (uj) ) f]

0
0V',_ [5'_ (_/,)f]

O_f
OviO_/,o

+ us2 0(¢o) O{¢z) 02f (20)
2 Oxk Oxk O_OCz

The transport equations for the filtered variables are obtained by integration of Eq. (20)

according to Eq. (12):

-0
OXk

o (u,) o (uk)(u,) o (p)
--+

Ot Oxk Oxi

0 (¢o)0_____V_+ 0 (_)0x_(¢o)_ (_ _

(21a)

O2 (u,_____))Or(uk, Ui)[ul \+ + OxkOxk Oxk
(211))

2) 0_ (¢°} Or(uk,¢_)+ Ox_Ox-------_.+ (s'_ (ez)) Ox_
(21c)

The transport equations for the second order SGS moments are

OT(Ui, ttj) "_ 0 (Uk) T(Ui, Uj) __ l/1 02T(_ti, Uj) T(ttk, tti) O (Itj)

Ot Oxk 2 OxkOxk Oxk

O(,,,}O(_,j)

+ (a - 2_zcV_ + ._) o_k Oxk -

+ [a_k_(_k,_j)+ aS(_,_d + C0_j]-
Or(uk, ui, uj)

OXk

0(_,,)
_-(_,k,"'J)--g-_k+

(22a)

o_-(_,,¢0) o {u_)T(_,,¢0) ._ o_(,,,, ¢0)
Ot + Oxk = -2 OxkOxk

• )o(,,,),0(¢4) T(_k,¢_

0(_,)0(¢o)
+

Oxk Oxk

Oxk

+

(22b)



0T(¢4, ¢_) 0(_)T(¢4,¢_) .102T(¢4,¢_) 0(¢_)

+

Ot + Oxk = 2 OxkOxk -- r(uk, G) Oxk r(_k,¢_) O*-----Z

(.1 - 2../-_-G + .s_) o(¢_>o(¢_>
Ozk Ozk

0T('_k,¢4,¢_)
OXk

0(¢4>
+

(22c)

A term-by-term comparison of the exact moment transport equations (Eqs. (4),(6)), with

the modeled equations (Eqs. (21),(22)), suggests Ul = u2 = u3 = us, = u& = 2u. However,

this violates the realizability of the scalar field. A set of coefficients yielding a realizable

stochastic model requires: ul = u2 = Ua = 2u and us, = u& = 0. That is,

dXi + = Ui+dt + v/_udWff

dU+ = [ O (p) 02 (ui) ]-O_i + 2u Ozk-_xk +Gij (U+ - <uJ>) dt

+ + 4-d o dwg
d +¢4 = -C¢w (¢+ - <¢o) ) dt

(23a)

(23b)

(23c)

The Fokker-Planck equation for this system is

0 [Cew(_,o - (¢_)) f]
Of 0 0 (p) Of 0 [aij (vj - (uj}) f] -t-0--[ + -_xk (vkf) - Oxi Ovi Ovi

02f ,-. O(uj) 02f _O(uj) 02f 1._, 02f+ + +" Ov,Ov +
and the corresponding equations for the moments are:

0<,.,k)
axk

o (u,) o (_) (u0
1+

Ot Oxk

o(¢_> o(,,k) (¢_)
--+

Ot Oxk

-0

O (p) 0 _ (u_) Or(uk, u,)

- Ox_ + "O_kOzk Oxk
o_(¢4) oT(_, ¢_)

- "0-Tk&_ 0xk

(24)

(25a)

(25b)

(25,')

&(_i, uj)
Ot

Ot

o<u_i-,-(u_,uj) °_'('""_) ,-(uk, o <,.,j) _-(u,,_,j)_+ Oxk = u OxkOxk ui) O-_k

+ [a_k_(_k_j) + ajk_(_k, _) + Co_d -- 0_(_k, _, _j)
OX k

O (uk) r(u_, ¢_) O2r(u,, ¢0) r(uk, u_) O (¢,_)
+ Oxk = u OxkOxk Oxk

+ [a_k_(_k,¢4) -- G_(_ ¢-)] -- 0_(_, _, ¢_)
' OXk

+

(26a)

+

(26b)
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&-(¢,., +_)
Ot + Oxk = u OxkOxk ) O--_k

+ [2.--Syi-x__ - 2c_.,-(+o,+,_) - Ox,_

o (+,_)

(26c)

Therefore, the stochastic diffusion process described by' the SDEs (23) implies the following

closure for the VSFDF:

0 ,) 0

2. OviO0_, t \ Oxk Oxk v, O P - V &b_Og, o [ \ _ Oxk '

O (ui) O (uj) 02 f 1_ O2f 02 f

0 0

Ovi [Co(vJ- (uj)) f] + 0-_[C+aJ(_ -<4)_))f]
(27)

which yields the closures at the second order levels:

= Gikr(uk, c)_) - Ceawr(ui, c)_)

(13)= -_ + _-Co + C+ _ (_, +_)(2Sb)

(0+_ 0+_'_ = -2c+_(+_,+_) + 2. °(+_) 0(+_) (2Sc)

IV. NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VSFDF transport equation is obtained by a Lagrangian

Monte Carlo (MC) procedure. The basis of this procedure is the same as that used in RAS

[34-36] and in previous FDF simulations [7, 9, 16]. In this procedure, the FDF is represented

by an ensemble of Nv statistically identical Monte Carlo particles. Each particle carries

information pertaining to its position, X('0(t), velocity, U(")(t), and scalar value, c/)('_)(t),

n = 1,...,Np. This information is updated via temporal integration of the SDEs. The

11



simplest way of performing this integration is via Euler-Maruyamma approximation [37].

For example,for Eq. (17a),

n X 71 n

X i (tk+,) = X'_(tk)+ (DiX(tk)) n At + (Bo(tk)) (/_)1/2 (_X(_]¢))

+

where Di(tk) = Di(X(n)(tk),U(')(tk),dP(n)(tk);tk), ''', and ((tk)'s are independent stan-

dardized Gaussian random variables. This scheme preserves the It5 character of the SDEs

[381.

The computational domain is discretized on equally spaced finite difference grid points.

These points are used for three purposes: (1) identify the regions where the statistical in-

formation from the MC simulations are obtained, (2) perform a part of tile simulations via

finite difference discretization coupled with the MC solver, and (3) perform a set of comph "-

mentary LES primarily by the finite difference methodology for assessing the consistency and

convergence of the MC results. The LES procedure via the finite difference discretization is

referred to as LES-FD and will be further discussed below.

Statistical information is obtained by considering an ensemble of NE computational par-

ticles residing within an ensemble domain of characteristic length AE centered around each

of the finite-difference grid points. This is illustrated schematically in Fig. 1. For reliable

statistics with minimal numerical dispersion, it is desired to minimize the size of ensemble

domain and maximize the number of the MC particles. In this way, the ensemble statistics

would tend to the desired filtered values:

1

<a>E -- NEE a(n) --'NE--._ (a>
nE A E A E..-*O

1 (a(, 0 (b(_) _ r (a b) (30)
vE(a,b) = NEE -- (a)s) -- <b)E) Nz--_ '

n6AE AE--O

where a (n) denotes the information carried by n th MC particle pertaining to transporl vari-

able a.

The LES-FD solver is based on the compact parameter finite difference scheme [39, 40].

This is a variant of the MacCormack scheme in which fourth-order compact differenc-

ing schemes are used to approximate the spatial derivatives, and second-order symmetric

predictor-corrector sequence is employed for time discretization. All of the finite difference

operations are conducted on fixed grid points. The transfer of information from the grid

12



points to the MC particles is accomplished via a second-order interpolation. The transfer of

information from the particles to the grid points is accomplished via ensemble averaging as

described above.

The LES-FD procedure determines the pressure field which is used in the MC solver.

The LES-FD also determines the filtered velocity and scalar fields. That is, there is a

"redundancy" in the determination of the first filtered moments as both the I, ES-F1) and

the MC procedures provides the solution of this field. This redundancy is actually very useful

in monitoring the accuracy of the simulated results as shown in previous work [9, 16, 34-36].

To establish consistency and convergence of the MC solver, the modeled transport equations

for the generalized second order SGS moments (Eq. (26) are also solved via LES-FD. In doing

so, the unclosed third order correlations are taken from the MC solver. The comparison of

all of the first and second refer moments as obtained by LES-FD with those obtained by

the MC solver is useful to establish the accuracy of the MC solver. These simulations are

referred to as VSFDF-C. Attributes of all of the simulation procedures are summarized in

Table ??. In this table and hereinafter, VSFDF simulations refer to the coupled MC/LES-

FD procedure in which the LES-FD is used for only the first order filtered variables. In

VSFDF-C, the LES-FD procedure is used for both first and second order filtered values.

Further discussions about the simulation methods are available in Refs. [7, 16, 34-36].

V. RESULTS

A. Flows Simulated

Simulations are conducted of a two-dimensional (2D) and a 3D temporally developing

mixing layer involving transport of a passive scalar variable. The 2D simulations are per-

formed to establish and demonstrate the consistency of the MC solver. The 3D simulations

are used to assess the overall predictive capabilities of the VSFDF methodology. These

predictions are compared with data obtained by direct numerical simulation (DNS) of the

same layer.

The temporal mixing layer consists of two parallel streams traveling in opposite direc-

tions with the same speed [41-43]. In the representation below, x,y (and z) denote the

streamwise, the cross-stream, (and the span-wise) directions (in 3D), respectively. The re-
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locity components along these directions are denoted by u, v, (and w) in the iv, Y, (and

z) directions, respectively. Both the filtered streamwise velocity and the scalar fields are

initialized with a hyperbolic tangent profiles with (u) = 0.5, (_) = 1 on the top stream and

(u) = -0.5, (4_) = 0 on the bottom stream. The length L is specified such that L = 2NPA_,,

where Nt, is the desired number of successive vortex pairings and )h, is the wavelength of

the most unstable mode corresponding to the mean streamwise velocity profile imposed at

the initial time. The flow variables are normalized with respect to the half initial vorticity

thickness, Lr = _ (Sv AU where (U)L is the Reynolds averaged value of the
2 , 10(u)L/0yl,,,_ '

filtered streamwise velocity and AU is the velocity difference across the layer). The reference

velocity is Ur = AU/2.

All 2D simulations are conducted for 0 _< x __%30, and -20 _< y _< 20. The dimensions

are chosen to trigger the most unstable linear mode. The formation of large scale structures

is facilitated by introducing small harmonic, phase-shifted, disturbances containing sub-

harmonics of the most unstable mode into the stream-wise and cross-stream velocity profiles.

For Np = 1, this results in formation of two large vortices and one subsequent pairing of

these vortices. The 3D simulations are conducted for a cubic box, 0 _< a: _< 60, -30 <

y _< 30, (0 _< z _< 60). The 3D field is parameterized in a procedure somewhat similar

to that by Vreman et al. [44]. The formation of the large scale structures are expedited

through eigenfunction based initial perturbations [45, 46]. This includes two-dimensional

[42, 44, 47] and three-dimensional [42, 48] perturbations with a random phase shift between

the 3D modes. This results in the formation of two successive vortex pairings and strong

t hree-dimensionality.

B. Numerical Specifications

Simulations are conducted on equally-spaced grid points with grid spacings A:r = A9 =

Az(for 3D) = A. All 2D simulations are performed on 32 x 41 grid points. The 3D simula-

tions are conducted on 1933 and 33 a points for DNS and LES, respectively. The Reynolds

number is Re = _ = 50.
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To filter the DNS data, a top-hat function of the form below is used
3

<x,- x)=II x,)
i=1

, __ (31)
O(x',- x,) = Ixi- x,I < ,

o lxi-x l > 2 '

No attempt is made to investigate the sensitivity of the results to the filter function [27] or

the size of the filter [49].

The MC particles are initially distributed throughout the computational region. All sim-

ulations are performed with a uniform "weight" [20] of the particles. Due to flow periodicity'

in the streamwise (and span-wise in 3D) direction(s), if the particle leaves the domain at one

of these boundaries new particles are introduced at the other boundary with the same com-

positional values. In the cross-stream directions, the free-slip boundary condition is satisfied

by the mirror-reflection of the particles leaving through these boundaries. The density of

the MC particles is determined by the average number of particles NE within the ensemble

domain of size AE x AE(XAE). The effects of both of these parameters are assessed to

ensure the consistency and the statistical accuracy of the VSFDF simulations.

All results are analyzed both "instantaneously" and "statistically." In the former, the

instantaneous contours (snap-shots) and scatter plots of the variables of interest are ana-

Reynolds-averaged statistics constructed from the instantaneouslyzed. In the latter, the " "

data are considered. These are constructed by spatial averaging over x (and z in 3D). All

Reynolds averaged results are denoted by an overbar.

C. Consistency and Convergence Assessments

The objective of this section is to demonstrate the consistency of the VSFDF formulation

and the convergence of its MC simulation procedure. For this purpose, the results via MC

and LES-FD are compared against each other in VSFDF-C simulations. Since the accuracy

of the FD procedure is well-established (at least for the first order filtered quantities), such

a comparative assessment provides a good means of assessing the performance of the MC

solution. No attempt is made to determine the appropriate values of the model constants;

the values suggested in the literature are adopted [50] Co = 2.1, C_ = 1 and C¢ = 1. The

influence of these parameters are assessed in Section(V D.
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The uniformity of the MC particle is checked by monitoring their distributions at all times,

as the particle number density must be proportional to fluid density. The Reynolds averaged

density field as obtained by both LES-FD and by MC are shown in Fig. 2. Close to unity

values for the density at all times is the first measure of accuracy of simulations. Figures

3 and 4 show the instantaneous contour plots of the filtered scalar and vorticity fields at

several times. These figures provide a visual demonstration of the consistency of the VSFDF.

This consistency is observed for all first order moments (filter values) without any statistical

variability. Also, all of the first moments show very little dependence on the AE and NE

values. So, in the presentation below we only focus on second order moments. Specifically,

the scalar-velocity correlations are shown since all other second order SGS moments behave

similarly.

Figure 5-6 show the statistical variability of the results for several simulations with NE =

40. It is observed that these moments exhibit spreads with variances decreasing as tile size

of the ensemble domain is reduced. Figures 7-10 show the sensitivity to NE and AE. All

these results clearly display convergence suggested by Eq. (30). As the ensemble domain

size decreases, the VSFDF results converge to those of LES-FD. Ideally, the LES-FD results

should become independent of the MC results, as the latter become more reliable, i.e. when

NE ---+ O0, and AE + 0). It is observed that best match is achieved with AE _< A/2

and NE > 40. This conclusion is consistent with previous assessment studies on the scalar

FDF [7, 9], and the velocity FDF [16]. All the subsequent simulations are conducted with

AE = A/2 and NE = 40.

D. Comparative Assessments of the VFDF

The objective of this section is to analyze some of the characteristics of the VSFDF via

comparative assessments against DNS data. In addition, comparisons are also made with
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LES via the "conventional" Smagorinsky [18, 51] model:

2

(32)

C, = 0.04, Sct = 1, S = _ and A L is the characteristic length of tile filter. This

model considers the anisotropic part of the SGS stress tensor aij = rL(ai,'uj)- 2/3 ],"(_i_.

The isotropic components are absorbed in the pressure field.

The predicted results via VSFDF and the Smagorinsky model are compared with those

obtained by DNS of the same flow. For this comparison, the DNS data are filtered and are

transposed from the original high resolution 1933 points to the coarse 333 points. In the

comparisons, we also consider the "resolved" and the "total" components of the Reynolds av-

eraged moments. The former are denoted by R(a,b)with R(a,b)= _((a)- -_)_ ((b)- (-_);_

and the latter is r(a,b) with r(a,b) = (a-_)(b-b--). n DNS, the "total" SGS components

are directly available, while in LES they are approximated by r(a, b) '_ R(a, b) + T(a, b) [44].

Unless indicated otherwise, the values of the model constants are (Co = 2.1, C_ = l, C¢ = 1;

but the effects of these parameters on the predicted results are assessed.

Figure 11 show the instantaneous iso-surface of the (¢) = 0.5 field t = 80. By this time,

the flow has gone through several pairings and exhibits strong 3D effects. This is evident by

the formation of large scale span-wise rollers with presence of mushroom like structures in

streamwise planes [45]. Similar to previous results of Gicquel et al. [16], the amount of SGS

diffusion with the Smagorinsky model is significant, especially at initial times. Therefore,

the predicted results are overly smooth. The Reynolds averaged values of the filtered scalar

field at t = 80 are shown in Fig. 12 and the temporal variation of the "scalar thickness,"

_(t) = [y((-¢y= 0.9)[ + y((¢)= O.1)l (33)

is shown in in Fig. 13. The filtered and unfiltered DNS data yield virtually indistinguishable

results. The dissipative nature of the Smagorinsky model at initial times resulting in a

slow growth of the layer is shown. All VSFDF predictions compare well with DNS data in

predicting the spread of the layer.
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Severalcomponentsof the planar averagedvaluesof the secondorder SGSmomentsare

comparedwith DNS data in Figs. 14-15for severalvaluesof the modelconstants. In general,

the the VSFDF resultsare in better agreementwith DNS data than thosepredicted by the

Smagorinskymodel. In this regard, therefore,the VSFDF is expectedto be moreeffective

than the Smagorinskytype closuresfor LES of reacting flows since the extent of SGS mixing

is heavily influenced by these SGS moments [52, 53]. However, it is not possible to suggest

"optimum" values for the model constants, except that at small C_ and C, values, the SGS

energy is very large.

Several components of the resolved second order moments are presented in Figs. 16-17.

As expected, the performance of the Smagorinsky model is not very good as it does not

predict the spread and the peak value accurately. The VSFDF yields reasonable predictions

of the resolved field, except for small C6 values. However, the total values of these moments

are fairly independent of the model constants and yield very good agreement with DNS

data as shown in Figs. 18-19. It is also interesting to note that while tile SGS moments

and/or the resolved moments may be over- and/or under-estimated depending on Ill<' values

of the model coefficients, the total values of the moments are fairly independent of these

coeflqcients, at least in the range of these values as considered. But low values of C®, (.'_

are not recommended as they would result into too much SGS energy in comparison to the

resolved energy.

VI. SUMMARY AND CONCLUDING REMARKS

The filtered density function (FDF) methodology has proven very effective for LES of

turbulent reactive flows. In previous investigations, the FDF of either only the marginal

FDF of the scalar, or that of the velocity were considered. The objective of present work is

to develop the joint velocity-scalar FDF methodology. For this purpose, the exact transport

equation governing the evolution of VSFDF is derived. It is shown that effects of lh('

SGS convection and chemical reaction appear in a closed form. The unclosed terms are

modeled in a fashion similar to those typically followed in PDF methods. The modeled

VSFDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme via

consideration of a system of equivalent stochastic differential equations (SDEs). These SDEs

are discretized via the Euler-Maruyamma approximation. The consistency of the VSFDF
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method and the convergence of its Monte Carlo solutions are assessed in LES of a two-

dimensional (2D) temporally developing mixing layer. This assessment is done by comparing

the results obtained via Monte Carlo procedure with those of the finite-difference scheme

(LES-FD) for the solution of the transport equations of the first two moments of VSFDF.

With inclusion of the third moments from the VSFDF into the LES-FD, the consistency

and convergence of the Monte Carlo solution is demonstrated by good agreements of the

first two SGS moments with those obtained by LES-FD.

The VFDF predictions are compared with those with LES results with the Smagorinsky

[18] SGS model. All of these results are also compared with direct numerical simulation

(DNS) data of a three-dimensional, temporally developing mixing layer. This comparison

provides a means of examining some of the trends and overall characteristics as predicted

by LES. It is shown that the VFDF performs well in predicting some of the phenomena

pertaining to the SGS transport. The magnitude of the second order SGS moments as

predicted by VSFDF is significantly larger than those predicted by the Smagorinsky model

and are much closer to the filtered DNS results. Most of the overall flow features, including

the mean field, the resolved and total stresses as predicted by VSFDF are in good agreement

with DNS data. It may be possible to improve the predictive capabilities of the VFDF by two

ways: (1) development of a dynamic procedure to determine the model coefficients, and/or

(2) implementation of higher order closures for the generalized Langevin model parameter

Gij (see Ref. [501).

Work is in progress on further development and application of VSFDF for LES of variable

density involving exothermic chemical reactions.
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Captions

Table 1. Attributes of the computational methods.

Figure 1. Concept of ensemble averaging. Shown are three different ensemble domains:

l(/k E = A/2, NE _ 10), 2(_E = /k NE _ 40), 3(Ae = 2A, NE ,'_ 160). Black squares de-

note the finite-difference grid points, and the circles denote the MC particles.

Figure 2. Cross-stream variation of the Reynolds-averaged values of (p) at t=34.3: (a)

ArE = 40, (b) AE = A/2.

Figure 3. Temporal evolution of the scalar (with superimposed vorticity iso-lines) (left)

and the vorticity (right) fields for LES-FD, with AE = A/2 and NE = 40 at several times.

Figure 4. Temporal evolution of the scalar (with superimposed vorticity iso-lines) (left)

and the vorticity (right) fields for VSFDF with AE = A/2 and NE = 40 at several times.

Figure 5. Statistical variability of LES-FD and VSFDF simulations with NE = 40 for

Reynolds-averaged values of r(u, ¢) at t=34.4.

Figure 6. Statistical variability of LES-FD and VSFDF simulations with NE = 40 for

Reynolds-averaged values of r(v, _) at t=34.4.

Figure 7. Cross-stream variations of the Reynolds-averaged values of r(u, ¢) (a) AE =

A/2, (b) AE = A, (c) AE = 2A.

Figure 8. Cross-stream variations of the Reynolds-averaged values of r(v, ¢) (a) AE =

A/2, (b) = (c) = 2A.

Figure 9. Cross-stream variations of the Reynolds-averaged values of w(u, ¢) (a) NE = 20,

(b) ArE = 40, (c) NE = 80.

Figure 10. Cross-stream variations of the Reynolds-averaged values of r(v, ¢) (a) NE =

20, (b) NE = 40, (c) NE = 80.

Figure 11. Contours surface of the (¢> field in the 3D mixing layer at t = 80.

Figure 12. Cross-stream variations of the Reynolds averaged values of the filtered scalar

field at t = 80.

Figure 13. Temporal variations of the scalar thickness.

Figure

Figure

Figure

Figure

14. Cross stream variations of some of the components of r at t = 60.

15. Cross stream variations of some of the components of r at t = 80.

16. Cross-stream variations of some of the components of R at t = 60.

17. Cross-stream variations of some of the components of R at t = 80.
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Figure 18. Crossstream variationsof _ at t = 60.

Figure 19. Cross stream variations of T at t = 80.
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Appendix III

This Appendix is published as Ref. [48].
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SIMULATION OF TURBULENT REACTIVE FLOWS
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Abstract. An overview is presented of recent developments and contribu-

tions in large eddy simulation (LES) of turbulent reactive flows. The foun-

dation of some of the recently proposed subgrid scale (SGS) closures for
such simulations is presented, along with a discussion of their capabilities

and limitations. The scope of the review is limited to physical modeling.

In doing so, only issues pertaining to additional complexities caused by

chemical reactions are discussed. That is, the challenges associated with

"general" LES of non-reactive flows are not considered, even though all

of these challenges are indeed present (and in most cases are a lot more

complex) in reactive flows. It is recognized that numerical algorithms and

computational procedures play a significant role in (any) LES. However,
this review does not deal with these issues except for cases wherein the

actual numerical-computational methodology is directly coupled with the

procedure by which LES is conducted. The SGS closure based on the re-

cently developed "filtered density function" (FDF) method is described in

a greater detail. This is due to more familiarity of this reviewer with this

closure; it does not imply that other closures are less effective.

1. Introduction

In the late 1980's, I was preparing a review article on large scale numerical

simulations of turbulent reactive flows. The intent was to provide a sur-

vey of the contributions made to both direct numerical simulation (DNS)

and large eddy simulation (LES). However, when that article was finally

published (Givi, 1989), its content was heavily biased towards DNS. This

was not intentional, it just reflected the state of progress on LES of turbu-
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lent combustion at that time. But with all of the enthusiasm for DNS in

the combustion community, the limitations of such simulations were well

recognized (even with the most optimistic predictions of growth in super-

computer technology). It was also clear that the future of large scale sim-

ulations of practical turbulent reacting flows would heavily depend on the

development of LES. Therefore, it was quite easy to predict that LES would

receive significant attention in computational predictions of turbulent re-

acting flows in the 1990's and into the next (present) century.

Now, at the time of writing this article (Summer 2001), while struggling

to meet the deadline for its submission(!) I am not surprised by the extent

of the contributions in developing subgrid scale (SGS) models or by the

magnificent work on LES of a variety of turbulent reacting flow systems.

In fact, I admit that the rate of these developments has been a lot faster

than my capability to absorb, or in some cases even follow, the details of

the proposed methodologies. In addition, the page-limit restrictions under

which this is being prepared, preclude describing the details of the wide

variety of currently available closures; similarly, citation of the relevant

references cannot even be done exhaustively. Fortunately, many aspects of

SGS closures and LES of reacting turbulence have recently been discussed in

several excellent tutorial and review articles (Cook and Riley, 1998a; Candel

et al., 1999; Bilger, 2000; Branley and Jones, 2000; Menon, 2000; Peters,

2000; Pope, 2000; Luo, 2001; Poinsot and Veynante, 2001). Therefore, in

the present review I concentrate on some of the major issues related to my
area of research within this field.

2. Starting Equations

Large eddy simulation involves the use of the spatial filtering operation

(Sagaut, 2001)

(Q(x, t))t = Q(x', x)dx', (1)
d-oo

where G denotes the filter function of width Aa, and (Q(x, t))t represents

the filtered value of the transport variable Q(x, t). In variable density flows

it is convenient to consider the Favr_ filtered quantity,

(q(x, t))i =(PQ)I/(P)t. (2)

We consider spatially & temporally invariant and localized filter functions,

G(x', x) -- G(x'-x) with the properties G(x) = G(-x), and f__ G(x)dx =

1. Moreover, we only consider "positive" filter functions for which all the
oO

moments f_-oo xmG(x) dx exist for m __ 0.
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To set the framework, we consider the transport equations of chemically

reacting flows. To isolate the effects of chemical reaction in the simplest

way, we consider single-phase (gaseous) combustion in a low Mach number

flow with negligible radiative heat transfer and viscous dissipation. We also

assume that Newton's law of viscosity, Fourier's law of heat conduction and

Fick's law of mass diffusion are applicable. Therefore, the primary transport

variables are the density p, the velocity vector ui, i = 1,2,3 along the

xi direction, the pressure p, the species' mass fractions Y_, and the total

specific enthalpy h. All of the mass fractions and the enthalpy are grouped

into the scalar array ¢(x, t) _= [¢1, ¢2,... Ca] - [Y1, Y2,..., YNs, h] of size

a = Ns + 1 where Ns denotes the total number of species. Application of

the filtering operation to the equations of continuity, momentum, enthalpy

(energy) and species mass fraction equations gives

O(p)____t+ O(p)e(Ui)L _ O, (3)
Ot Ozi

Ot + Oxi cOxj + Oxi Oxi' (4)

O(p)e(¢.)L + Oip)e(Ui)L(¢_)L _ O(J_)t aM[' + (pSi)t, (5)
Ot 8xi cOxi Ozi

where t represents time, and the filtered reaction source terms are denoted

by (pS_)t = (p)t(Sa)L. The viscous stress tensor and the mass/heat fluxes

are denoted by rij, and J_', respectively. At low Mach numbers and heat
release rates, by neglecting the viscous dissipation and thermal radiation

the source terms in the enthalpy equation can be assumed to be negligible.

Thus, S_ = S_(_b). The terms Tij = (p)t((UiUj)L-- (Ui)L(Uj)L) and M/_ =

(p)e((ui¢_)L -- (Ui)L(¢c_)L) denote the SGS stress and the SGS mass flux,

respectively. Equations (3)-(5) are coupled through the equation of state.

3. Closure Methodologies

For non-reacting flows the SGS closure is associated with Tij and M_

(Canuto, 1994; Ciofalo, 1994; Lesieur and Metals, 1996). In reacting flows,

an additional model is required for the filtered reaction rate {S_)L. This

modeling is the subject of primary concern in this review.
One of the first contributions in LES of reactive flows, similar to that in

LES of non-reacting flows, was made in atmospheric sciences (Schumann,

1989). In this work, the effects of SGS scalar fluctuations (as appear in the

chemical source term) are assumed negligible, i.e. (Sc_(_))L _ Sc_((¢)L)-

This assumption is compatible with that made in some of the more recent

contributions (Boris et hi., 1992; Fureby and Grinstein, 1999), in which it



84 PEYMANGIVI

is arguedthat all of the essentialSGScontributionsare includedin the
numericaldiscretizationprocedure.

Modelingof the scalarfluctuationshasbeenthe subjectof broadin-
vestigationsin Reynoldsaveragedsimulations(RAS)for overfivedecades,
resultingin avarietyof closurestrategies(Libby andWilliams,1980;Libby
and Williams, 1994).Within the past 10yearsor so,almostall of these
closureshavebeenconsideredfor LES.Examples:the eddy-breakupmod-
els (Furebyand Lofstrom, 1994;Candelet al., 1999), moment methods

(Frankel et al., 1993), the flamelet concept (Cook et al., 1997; Cook and
Riley, 1998b; De Bruyn Kops et al., 1998; DesJardin and Frankel, 1998;

DesJardin and Frankel, 1999; Pitsch and Steiner, 2000; Ladeinde et al.,

2001), the linear eddy model (LEM) (McMurtry et al., 1992; Menon and

Calhoon, 1996; Kim et al., 1999; Menon, 2000), the conditional moment

method (CMM) (Bushe and Steiner, 1999; Steiner and Bushe, 2001), and
many others (Sykes et al., 1992; Galperin and Orszag, 1993; Smith and

Menon, 1996; Im et al., 1997; McGrattan et al., 1998; Thibaut and Candel,

1998; Battaglia et al., 2000; Collin et al., 2000). In addition, several of the

closures previously developed for LES of non-reacting flows, have been ex-

tended for use in reacting flow simulations (DesJardin and Frankel, 1998;
Jaberi and James, 1998).

The probability density function (PDF) methods have proven particu-

larly useful in RAS (O'Brien, 1980; Pope, 1985; Dopazo, 1994; Fox, 1996;

Pope, 2000). The systematic approach for determining the PDF is by means

of solving its transport equation. An alternative approach is based on

assumed methods in which the shape of the PDF is specified a priori.
This has been pursued in several studies in most of which it is assumed

that the thermo-chemical variables depend only on the mixture fraction,

e.g. infinitely fast reaction, equilibrium chemistry. Therefore, the PDF is

univariate (Madnia and Givi, 1993; Cook and Riley, 1994; R_veillon and

Vervisch, 1996; Branley and Jones, 1997; Jim_nez et al., 1997; Mathey and
Chollet, 1997; DesJardin and Frankel, 1998; DesJardin and Frankel, 1999;

Forkel and Janicka, 2000; Kempf et al., 2000). For LES of non-equilibrium

reactive flows, it is necessary to assume the joint PDF of multi-scalars

(Frankel et al., 1993). Consistent with popular methods of generating uni-

variate (Leemis, 1986) and multivariate (Johnson and Kotz, 1972) distribu-
tions, all of the assumed SGS scalar PDFs in the contributions cited above

are based on the first and the second order moments. The PDFs generated
in this way offer sufficient flexibility and are affordable for large scale sim-

ulations. However, it is now well understood that the "true" PDF strongly

depends on the actual physics of mixing in a given flow condition (Jaberi

et al., 1996). Therefore, there is a need to determine such PDFs in a more

systematic manner.
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The "filtereddensityfunction" (FDF) methodologyintroducedbyPope
(1990)providesthe frameworkfor fundamentaldevelopmentsof the PDF
basedSGSclosures.Thismethodprovidesameansof determiningthePDF
from its own transport equation.For the scalars'array ¢(x, t) the FDF,

denoted by PL, is defined as (Pope, 1990)

PL(¢; x, t) = /if co ( [¢, ¢(x', t)] G(x' - x)dx', (6)

C[t/,,¢(x,t)] = II 5[_b, - ¢,(x,t)], (7)

where _f denotes the delta function and t/' denotes the composition domain

of the scalar array. The term ([(_ - ¢(x, t)] is the "fine-grained" density

(Lundgren, 1967; O'Brien, 1980; Pope, 1985; Dopazo, 1994). In variable

density flows, it is convenient to consider the "filtered mass density func-

tion" (FMDF), denoted by FL, as

x, t) p(x', [¢, ¢(,,', t)]a(x' - x)dx'. (8)

The integral property of the FDF and FMDF is such that

_:oo PL(*;x,t)d¢ = 1, j[_+oo FL(¢;x,t)d* = (p(x,t))t. (9)

For further discussions, it is useful to define the mass weighted conditional

filtered mean of the variable Q(x, t),

(Q(x, t)l_/,)e - f-+_ p(x', t)Q(x', t)( [¢, 4_(x', t)] a(x' - x)dx'
FL(¢;x,t) (10)

Therefore, when Q can be completely described by the compositional vari-

able, i.e. Q(x,t) -= (0(¢(x, t)), we have (Q(x,t)[O)e = 0(¢). Also,

ff_(Q(x,t)lO)tFL(O;x,t)d¢ = (p(x,t))t(Q(x,t))L. (11)

The transport equation for FL(¢; x, t) is obtained by multiplying the trans-

port equation for the fine grained density by the filter function G(x _ - x)

and integrating over x _ space (Gao and O'Brien, 1993; Colucci et al., 1998;
R_veillon and Vervisch, 1998; Jaberi et al., 1999; Jaberi, 1999; Zhou and

Pereira, 2000; Tong, 2001),
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OFL(¢;x, t) + O[(u_(x,t)lC)trL(¢; x, t)] = _ O[_o(¢)rL(¢; x, t)]
Ot Oxi 0¢_,

+ _--5-J-. I¢ FL(¢;x,t) . (12)
t

The first term on the RHS is due to chemical reaction and is in a closed

form. This demonstrates the primary advantage of the FDF methodology.

However, the SGS convection (the second term on the LHS) and SGS mix-

ing (the second term on the RHS) must be modeled. One of the most chal-
lenging issues in FDF is associated with closure of the mixing term. This

has been the subject of broad investigations in PDF modeling (Pope, 1985;

Pope, 2000). In Eq. (12) the effects of mixing are displayed through the

"conditional expected diffusion" of the scalars, but can also be represented

in the form of the "conditional expected dissipation" (O'Brien, 1980; Pope,
1985). The closure for this can be via any of the ones currently in use in

PDF methods (Pope, 2000). In the absence of a clearly superior model, the

linear mean square estimation (LMSE) model (O'Brien, 1980) has been

used in almost all of previous LES based on FDF (Colucci et al., 1998;
Jaberi et al., 1999; Garrick et al., 1999; James and Jaberi, 2000; Zhou and

Pereira, 2000). With J_' = -7 0__¢_a0x_,this model is

o[<,o,,o+o,,> ] oj ox, ) EL - 0,, 1
0

+ _ [r_m(,b<,- (¢_)L)FL],(13)

where _m(X, t) is the "frequency" of mixing within the subgrid and must
be modeled. The convective term can be modeled as

O( FLI (P)t) (14)
(u_I¢)_FL = (Ui)LFL -- 7t Oxi '

where 7t is the SGS diffusion coefficient and must be specified. Equation

(14) is in accord with that often used in conventional LES (Moin et al.,

1991; Canuto, 1994; Ciofalo, 1994; Lesieur and Metals, 1996). With this
formulation, obviously the resolved hydrodynamic field must be determined

by other means. This problem can be circumvented by considering the joint
velocity-scalar FMDF,

9rL(V, ¢, x; t) --=Coo p(x', t)_ [v, u(x', t), ¢, ¢(x', t)] G(x' - x)dx', (15)
J-¢o
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3 o*

[v, u(x, t), ¢, ¢(x, t)] = 1]  [vk - uk(x, t)] 1-I - t)],
k=l o---1

(16)

where v denotes the composition domain of the random velocity vector, and

_[v, u(x, t), _/,, ¢(x, t)] is the fine-grained velocity-scalar density. Most re-

cent work in this regard consider the transport of the velocity FDF (VFDF)

(Gicquel, 2001) and the joint velocity-scalar EDF (VSFDF) (Drozda, 2001).

The operational procedure is similar to that developed previously for PDF

methods (Pope, 1985; Pope, 1994; Pope, 2000).

The closure problems as noted above are not particular to the FDF;

all of the other schemes require similar modelings. For example, in the

limit of equilibrium chemistry all of the statistics of the reacting fields
are related to those of the mixture fraction. The FMDF of the mixture

fraction can be obtained from the solution of Eq. (12) with S = 0. So,

there is still a need for modeling of the mixing term. Even in cases where

the FMDF is assumed, its distribution is parameterized with the low order

moments of the mixture fraction. As indicated above, the first two moments

are typically used for this parameterization. Therefore, there is a need for
closure of the "total SGS dissipation" as appears in the second moment

(SGS variance) equation. Several means of dealing with this closure problem

are available (Girimaji and Zhou, 1996; Pierce and Moin, 1998; Cook and

Bushe, 1999; Jim6nez et al., 2001; De Bruyn Kops and Riley, 2001).

The above problem is a bit more complex when the SGS chemical reac-

tion is assumed to be in the "flamelet" regime (Peters, 2000). In this case,

even with the one-dimensional flamelet model, the thermo-chemical vari-
ables are parameterized by the mixture fraction and its rate of dissipation

(Cook et al., 1997; Cook and Riley, 1998b; De Bruyn Kops et al., 1998;

DesJardin and Frankel, 1998; Cook and Riley, 1998b). Therefore, there is a
need for a priori specification of the joint FDF of the mixture fraction and

its dissipation. A review of different methods of dealing with this issue is

available (Cook and Riley, 1998a). Equation (12) with A'= 0 indicates that
there is a dependence between the FDF of the mixture fractions and the

conditional expected diffusion (and the conditional expected dissipation).
This dependency is not considered in most previous contributions, but is

the subject of current investigations (DesJardin et al., 2001).

Modeling of the conditional expected dissipation is also required in the

conditional moment method (Bushe and Steiner, 1999; Steiner and Bushe,

2001). This issue has been recognized at the early stages of developments of

CMM in RAS (Bilger, 2000). With this model, the conditional filtered mean

values of the thermo-chemical variables (LHS of Eq. (10)) are obtained

by their modeled transport equation. This is obviously computationally
less demanding that solving the FDF transport equation. But in order to



88 PEYMANGIVI

determinethe actual filtered quantities,the distribution of the mixture
fractionFDF mustbespecified.

An important issuein regardto FDF is associatedwith the numeri-
cal solutionof its transportequation.TheLagrangianMonteCarloscheme
(Pope,1985)hasprovenparticularlyusefulfor thispurpose.In this scheme,
the FDF is representedvia anensembleof computationalelementsor par-
ticles.Transportof theseparticlesand the changein their propertiesare
modeledby asetof stochasticdifferentialequations(SDEs)(Soong,1973).
The diffusionprocess(Gardiner, 1990)hasproveneffectivefor this pur-
pose.Thecoefficientsin the Langevinequationgoverningthis processare
setin sucha waythat the resultingFokker-Planckequation(Risken,1989)
is equivalentto the FDF transport equation.Therefore,the Monte Carlo

solution of the SDEs represent the solution of the FDF in the probabilistic

sense. This procedure has proven successful for simulating PDF in a variety

of systems (Grigoriu, 1995). However, one must be careful in performing

stochastic simulations in conjunction with modern CFD solvers. Many of

the advanced discretization routines developed for solving deterministic dif-
ferential equations may not be applicable, or may have to be significantly

modified to be suitable for solving SDEs (Kloeden and Platen, 1995).

Implementation of LEM is also based on stochastic representation of

the flow. In its original development in RAS (Kerstein, 1988), the processes

of molecular diffusion, chemical reaction and turbulent convection are con-
sidered separately. This is achieved by a reduced one-dimensional (linear)

description of the scalar field, which makes it possible to resolve the flow

scales even for flows with relatively high Reynolds, Schmidt and Damk5hler

numbers. The interpretation of the one-dimensional domain is dependent

on the particular flow under consideration. In this way, the processes of
molecular diffusion and chemical reaction are taken into account exactly,

but the effects of convection are modeled. This is achieved by "random

rearrangement" (or stirring) events in such a way that the displacements
of fluid elements result in a diffusivity equal to the "turbulent diffusivity."

For LES, this procedure is followed within each of the computational cells,

and stirring is performed to yield the desired SGS diffusivity. Menon and
colleagues have made extensive use of LEM for LES of a wide variety of

reacting flows. A recent review is available (Menon, 2000).
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